Consider the integral for $n\geq 2$ $$I(n)=\int_{0}^{1}[1-(1-x)^{n-1}]\frac{dx}{x} $$
Prove that $$\lim_{n\to \infty}\frac{I(n)}{\log n}=1$$
In integral $I(n)$, since $\int_{0}^{1}f(x)dx= \int_0^1 f(1-x) dx$ so we get $$I(n)=\int_{0}^{1}\frac{ 1-x^{n-1} }{1-x} dx $$ So we get by using the sum of $n$ terms of a Geometric Progression $$I(n)=\int_0^1 (1+x+x^2+x^3+...+x^{n-2}) dx$$
So $$I(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n-1}$$ So we obtain $$I(n)=\sum_{k=1}^{n-1}\frac{1}{k}$$ Now we know that $$\gamma=\lim_{n\to\infty}\left(\sum_{k=1}^n\frac{1}{k} -\log n\right)$$ So we have $$\lim_{n\to \infty}\left(I(n)+\frac{1}{n}-\log n\right)=\gamma$$ I am struggling to prove the asymptotic. Any help will be appreciated.