The integral
$$ \int_0^{\infty}\frac{1}{1 + x^{k}} \,{\rm d}x $$ is
- $\frac{\pi}{2}$ for $k = 2$,
- $\frac{2\pi}{3\sqrt{3}}$ for $k=3$,
- $\frac{\pi}{2\sqrt{2}}$ for $k=4$,
- $\frac{\pi}{3}$ for $k=6$.
Is there a general rule?
The integral
$$ \int_0^{\infty}\frac{1}{1 + x^{k}} \,{\rm d}x $$ is
Is there a general rule?
Use beta integral with Gamma functions as$$2\int_{0}^{\pi/2} \sin^m t \cos^n t dt=\frac{\Gamma(\frac{m+1}{2})\Gamma(\frac{n+1}{2})}{\Gamma(\frac{m+n+2}{2})}.$$ Use $x=\tan^{2/k} t \implies dx=\frac{2}{k} \tan^{3/k-1} \sec^2t dt$. Then $$I_k=\int_{0}^{\infty} \frac{dx}{1+x^k}=\frac{2}{k}\int_{0}^{\pi/2} \sin ^{2/k-1} t \cos^{1-2/k} t dt=\frac{1}{k}\Gamma(1/k)\Gamma(1-1/k)=\frac{\pi}{k}\csc(\pi/k).$$ We have used $\Gamma(z) \Gamma(1-z)=\pi \csc(\pi/z).$