I do not know of any relationship between the summands, only the relationship between the sum and it's factors.
For Pythagorean triples,
$\space (A^2+B^2=C^2),\space$ there are $\space 2^{n-1}\space$ primitive triples where $\space n\space$ is the number of distinct prime factors of
$\space C.\quad$ A primitive triple is one where $\space GCD(A,B,C)=1.\quad $ For example, the number $\space65=5*13\space$ so there are
$\space 2^{2-1}=2^1=2\space$ primitive triples with that hypotenuse value.
To find them, we begin with Euclid's formula shown here as:
$$A=m^2-k^2 \quad B=2mk \quad C=m^2+k^2$$
and, solving for $\space k,\space$ we test a defined range of $\space m$-values to see which, if any, yield integers.
$$C=m^2+k^2\implies k=\sqrt{C-m^2}\\
\qquad\text{for}\qquad \bigg\lfloor\frac{ 1+\sqrt{2C-1}}{2}\bigg\rfloor \le m \le \lfloor\sqrt{C-1}\rfloor$$
The lower limit ensures $m>k$ and the upper limit ensures $k\in\mathbb{N}$.
$$C=65\implies \bigg\lfloor\frac{ 1+\sqrt{130-1}}{2}\bigg\rfloor=6 \le m \le \lfloor\sqrt{65-1}\rfloor=8\quad \\
\text{and we find} \quad m\in\{7,8\}\longrightarrow k\in\{4,1\}\\$$
$$F(7,4)=(33,56,65)\qquad F(8,1)=(63,16,65) $$
So $$33^2+56^2=63^2+16^2=65^2$$
$\textbf{Update}"\quad$ The parts of a Pythagorean triple have characteristics that may or may not be called relationships.
- Side-$A\space$ can be any odd number greater than one.
- Side-$B\space$ can be any multiple of four.
- Side-$C\space$ must be of the form
$\space 4x+1, x\in\mathbb{N}\space$ but not all such values are valid. A list of the first couple of dozen hypotenuse values is shown
here.