$E$ is the splitting field of a $f(x)(\in\mathbb{Q}[x])$ whose degree is $8$. Say $E=\mathbb{Q}(\sqrt{2},\sqrt{3}, \alpha)$ (Here $\alpha = \sqrt{(2+\sqrt{2})(3+\sqrt{3})}$). Find the group isomorphic to $G(E/\mathbb{Q}) $.
Let me show my solution. By tower theorem, $[E : \mathbb{Q}]=8$ (I could easily check the $deg$ $irr(\alpha, E_1) =2$ for $E_1=\mathbb{Q}(\sqrt{2},\sqrt{3})).$ I found the all the element of $G(E/\mathbb{Q})$ like the below considering the roots of $irr(\alpha, E_1)$ are $\pm\alpha$
$\sigma(\in G(E/\mathbb{Q})) : \sqrt2 \to \pm \sqrt2, \sqrt3 \to \pm \sqrt3, \alpha \to \pm\alpha$
Therefore, $\forall \sigma(\in G(E/\mathbb{Q})), \vert \sigma \vert =2 $. Hence $G(E/\mathbb{Q})\simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 $
Is my solution right? Aren't there any solutions except for mine?