I am solving this exercise problem from Hernstien it goes like:
If $a= p_1^{\alpha_ 1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ and $b =p_1^{\beta_1}p_2^{\beta_2}\cdots p_k^{\beta_k}$
Prove that: $(a,b)=p_1^{\delta_1}p_2^{\delta_2}\cdots p_k^{\delta_k})$, where $\delta_i = \min(\alpha_i,\beta_i)$ for all $i$.
My attempt:
Proof: Since, $p_i>0$ for all $i$, ${p_i}^{\delta_i}$ should be as large as possible.
Since, $a= p_1^{\alpha_ 1}p_2^{\alpha_2}\cdots p_k^{\alpha_k},$ $p_1^{\alpha_1}\mid a$ and similarly, $p_1^{\beta_1}\mid b,$ which implies $p_1^{\min({\alpha_1,\beta_1})}\mid a$ and $p_1^{\min({\alpha_1,\beta_1})}\mid b$ $\implies$ $p_1^{\delta_1}$ divides both $a$ and $b.$
Therefore, $p_i^{\delta_i}$ divides both $a$ and $b$ for all $i.$
Thus, $(a,b)=p_1^{\delta_1}p_2^{\delta_2}\cdots p_k^{\delta_k}.$
Is my proof correct? Any improvements are welcome.