I have this limit: $$\lim_{x \to -\infty} x^2\left({(x^2+1)\cosh{\frac 1x}\over x^2}-1\right)$$
If I solve this limit by hand, I get 1 $\require{cancel}$ $$\lim_{x \to -\infty} x^2\left({(x^2+1)\cosh{\cancelto{0}{\frac 1x}}\over x^2}-1\right)=$$ $$\lim_{x \to -\infty} x^2\left({(x^2+1)\cancelto{1}{\cosh{0}}\over x^2}-1\right)=$$ $$\lim_{x \to -\infty} \cancel{x^2}\left({\cancel{x^2}+1\cancel{-x^2}\over \cancel{x^2}}\right)=1$$
However, both Wolfram Alpha and the exercise say the correct result is ${\frac 32}$ $$\lim_{x \to -\infty} x^2\left({(x^2+1)\cosh{\frac 1x}\over x^2}-1\right) = \frac 32$$
However, if I remove $\cosh{\frac 1x}$, which for ${x \to -\infty}$ tends to $1$, suddenly Wolfram Alpha says the result is 1: $$\lim_{x \to -\infty} x^2\left({(x^2+1)\over x^2}-1\right) = 1$$
I'm at a complete loss. Wolfram Alpha uses L'Hopital's rule to solve the first limit, so it doesn't help me undersand the discrepancy