I am not a mathematician but when I read R. J. Mathar's answer and some comment, I somehow found way to solve the problem.
I use the set up very similar to R. J. Mathar's answer and extend it to other possible solutions. Then I found that the all possible solutions are one of these case.
It take me many days to find answer and draw the picture since I am not expert in drawing in tikz. Here is my attempt.
Let
- The small black dot is Center of the circle which is at origin point $O$ (at $(0,0)$)
- Each vertex of triangle $V_0,V_1,V_2$ is at position $(x_0,y_0)$,$(x_1,y_1)$,$(x_2,y_2)$ and have angle $\theta_0,\theta_1,\theta_2$ (in radian) in order.
- Each intersect point $I_1,I_2,I_3,I_4$ is at position $(I_{1,x},I_{1,y}),(I_{2,x},I_{2,y}),(I_{3,x},I_{3,y}),(I_{4,x},I_{4,y})$ in order when $I_1$ is the intersect point at right-above and then rotate clockwise.
- $P$ is the outer perimeter of the new intersecting shape
- The red dot is Centroid of triangle $C$ which is at position $(C_x,C_y)=(\frac{x_0+x_1+x_2}{3},\frac{y_0+y_1+y_2}{3})$
Note : Only Picture 2 is in precisely approximate picture but still not actual picture. All other pictures are actual picture that use (x,y) position from the result.

$\hspace{150pt}$ Picture 1 : $x_0=0$
Picture 1 case is R. J. Mathar's answer.
From R. J. Mathar's set up, all $y_1$ and $y_2$ in every cases are always approximately equal to -0.264932. And all $I_2$ and $I_3$ in every cases are at same position.
\begin{align}
x_{0,1} &= 0 \\
y_{0,1} &\approx 0.317324 \\
x_{1,1} &\approx 5.39554 \\
y_{1,1} &\approx -0.264932 \\
x_{2,1} &\approx -5.39554 \\
y_{2,1} &\approx -0.264932 \\
C_{x,1} &= 0 \\
C_{y,1} &\approx \frac{0.317324+(-0.264932)+(-0.264932)}{3} \approx -0.0708467 \\
|\overline{OC_1}|=C_{y,1} &\approx 0.0708467
\end{align}
From R. J. Mathar's answer, $t_0\approx0.181130$.
Finding all intersect point of Picture 1 ($I_{1,1},I_{2,1},I_{3,1},I_{4,1}$)
\begin{align}
I_{1,x,1}=x_{0,1}+t_0(x_{1,1}-x_{0,1}) &\approx 0+0.181130(5.39554-0) \approx 0.977294 \\
I_{1,y,1}=y_{0,1}+t_0(y_{1,1}-y_{0,1}) &\approx 0.317324+0.181130((-0.264932)-0.317324) \approx 0.211860 \\
I_{2,x,1}=\sqrt{1-y_{1,1}^2} &\approx \sqrt{1-(-0.264932)^2} \approx 0.964267 \\
I_{2,y,1}=y_{1,1} &\approx -0.264932 \\
I_{3,x,1}=-I_{2,x,1} &\approx -0.964267 \\
I_{3,y,1}=I_{2,y,1} &\approx -0.264932 \\
I_{4,x,1}=-I_{1,x,1} &\approx -0.977294 \\
I_{4,y,1}=I_{1,y,1} &\approx 0.211860
\end{align}
Finding outer perimeter of Picture 1 ($P_1$)
\begin{align}
P_1 =&\ |\overline{V_{1,1} I_{1,1}}| + |\overline{V_{1,1} I_{2,1}}| + (Circle\ Curve\ I_{2,1}\ to\ I_{3,1}) + |\overline{V_{2,1} I_{3,1}}| + |\overline{V_{2,1} I_{4,1}}| + (Circle\ Curve\ I_{3,1}\ to\ I_{4,1}) \\
=&\ 2(\sqrt{(x_{1,1}-I_{1,x,1})^2+(y_{1,1}-I_{1,y,1})^2} + \sqrt{(x_{1,1}-I_{2,x,1})^2+(y_{1,1}-I_{2,y,1})^2}) + 2\arcsin(I_{2,x,1}) + 2\arcsin(I_{1,x,1}) \\
\approx&\ 2(\sqrt{(5.39554-0.977294)^2+((-0.264932)-0.211860)^2} + \sqrt{(5.39554-0.964267)^2+0}) + 2\arcsin(0.964267) + 2\arcsin(0.977294) \\
\approx&\ 23.0702
\end{align}
$\hspace{150pt}$ Picture 2 : $|x_0|>0$ and $|\overline{V_0 O}|<1$
In Picture 2 and after picture, when we shift $V_0$ from the center line, the picture will lose the symmetry. Shifting to the left or right will give the similar answer but in mirror image of each other, so I will calculate only shifting to the left case.
The is the hardest one that I can't solve. I will talk about Picture 2 later in Discussion.
$\hspace{150pt}$ Picture 3 : $|\overline{V_0 O}|=1$
If we keep shifting the top vertex, at specific point we will get Picture 3 where $V_0$ and $I_4$ is the same point.
To find each value, I draw these additional lines

Because from the initial condition that each area are equal, we get
\begin{align}
|\overline{V_{0,3} V_{1,3}}| &= |\overline{I_{3,3} V_{1,3}}| \\
|\overline{V_{0,3} I_{1,3}}| &= |\overline{I_{3,3} I_{2,3}}| \\
|\overline{I_{1,3} V_{1,3}}| &= |\overline{I_{2,3} V_{1,3}}|
\end{align}
The triangle $V_{0,3}I_{3,3}V_{1,3}$ is isoscale triangle and line $\overline{OV_{1,3}}$ divide $\theta_{1,3}$ in to two equal angles. From this, we get
\begin{align}
y_{1,3} &= y_{1,1} \approx -0.264932\\
|I_{2,x,3}| &= \sqrt{1-(y_{1,3})^2} \approx \sqrt{1-(-0.264932)^2} \approx 0.964267 \\
\frac{(Area\ V_{0,3}I_{3,3}V_{1,3})}{2} &= (Area\ OBV_{1,3}) - (Area\ OBI_{2,3}) - (Area\ ODI_{2,3}) \\
\frac{(\frac{\pi}{3})}{2} &= \frac{1}{2}|x_{1,3}||y_{1,3}| - \frac{1}{2}|I_{2,x,3}||y_{1,3}| - \pi\frac{\arctan(\frac{|x_{1,3}|}{|y_{1,3}|})-\arctan(\frac{|I_{2,x,3}|}{|y_{1,3}|})}{2\pi} \\
\frac{\pi}{6} &= \frac{0.264932}{2}|x_{1,3}| - \frac{0.264932}{2}(0.964267) - \frac{\arctan(\frac{|x_{1,3}|}{0.264932})-\arctan(\frac{0.964267}{0.264932})}{2} \\
\end{align}
This equation can be solved for $|x_{1,3}|$ analytically since there are both $|x_{1,3}|$ and $\arctan(\frac{|x_{1,3}|}{0.264932})$, so I use Wolframalpha to solve it. From picture $x_{1,3}>0$, we get
\begin{align}
(Wolframalpha) \rightarrow x_{1,3} &\approx 5.75543 \\
y_{1,3} &\approx -0.264932 \\
\theta_{1,3} = 2\arctan(\frac{|x_{1,3}|}{|y_{1,3}|}) &\approx 0.0919984 \\
I_{2,x,3} = I_{2,x,1} = &\approx 0.964267 \\
I_{2,y,3} = I_{2,x,1} = &\approx -0.264932 \\
I_{3,x,3} = -I_{2,x,3} &\approx -0.964267
I_{3,y,3} = I_{2,x,1} = &\approx -0.264932 \\
I_{1,x,3} = x_{1,3} - (|x_{1,3}|-|I_{2,x,3}|)\cos(\theta_{1,3}) &\approx 0.984528 \\
I_{1,y,3} = y_{1,3} + (|x_{1,3}|-|I_{2,x,3}|)\sin(\theta_{1,3}) &\approx 0.175226 \\
x_{0,3} = x_{1,3} - (|x_{1,3}|+|I_{2,x,3}|)\cos(\theta_{1,3}) &\approx -0.935850 \\
y_{0,3} = y_{1,3} + (|x_{1,3}|+|I_{2,x,3}|)\sin(\theta_{1,3}) &\approx 0.352398 \\
\end{align}
Finding $x_{2,3}$
\begin{align}
(Angle\ \widehat{I_{3,3}OV_{0,3}}) &= 2\pi - 4\arctan(\frac{|I_{2,x,3}|}{|y_{1,3}|}) - 2\left(\arctan(\frac{|x_{1,3}|}{|y_{1,3}|})-\arctan(\frac{|I_{2,x,3}|}{|y_{1,3}|})\right) \\
&\approx 0.628265 \\
(Chord\ Area\ I_{3,3}V_{0,3}) &= \frac{(Angle\ \widehat{I_{3,3}OV_{0,3}})-sin(Angle\ \widehat{I_{3,3}OV_{0,3}})}{2}\\
&\approx 0.0202615 \\
(Area\ I_{3,3}V_{2,3}V_{0,3}) &= (Area\ Triangle\ I_{3,3}V_{2,3}V_{0,3}) - (Chord\ Area\ I_{3,3}V_{0,3}) \\
\frac{\pi}{3} &= \frac{1}{2}(|x_{2,3}|-|I_{3,x,3}|)(|y_{0,3}|+|y_{1,3}|) - (Chord\ Area\ I_{3,3}V_{0,3}) \\
\frac{\pi}{3} &\approx \frac{1}{2}(|x_{2,3}|-0.964267)(0.352398+0.264932) - 0.0202615 \\
|x_{2,3}| &\approx 4.42258 \\
(x_{2,3}<0) \rightarrow x_{2,3} &\approx -4.42258 \\
y_{2,3} &\approx -0.264932 \\
\end{align}
Finding centroid ($C_3$)
\begin{align}
C_{x,3} = \frac{x_{0,3}+x_{1,3}+x_{2,3}}{3} &\approx 0.132333 \\
C_{y,3} = \frac{y_{0,3}+y_{1,3}+y_{2,3}}{3} &\approx -0.059155 \\
|\overline{OC_3}|=\sqrt{C_{x,3}^2+C_{y,3}^2} &\approx 0.144950
\end{align}
Finding outer perimeter ($P_3$)
\begin{align}
P_3 =&\ |\overline{V_{2,3} V_{0,3}}| + |\overline{V_{2,3} I_{3,3}}| + 2|\overline{I_{2,3} V_{1,3}}| + 2(Circle\ Curve\ I_{2,3}\ to\ I_{3,3})\\
=&\ \sqrt{(x_{2,3}-x_{0,3})^2+(y_{2,3}-y_{0,3})^2} + |x_{2,3}-I_{3,x,3}| + 2|I_{2,x,3}-x_{1,3}| + 2(2\arcsin(I_{2,x,3}))\\
\approx&\ 21.7922
\end{align}
$\hspace{150pt}$ Picture 4 : $|\overline{V_0 O}|>1$ and $|\overline{V_0 V_1}|<|\overline{V_2 V_1}|$
In Picture 4, $V_{1,4},I_{1,4},I_{2,4},I_{3,4},I_{4,4},$ are the same point as in Picture 3, so
\begin{align}
x_{1,4} &\approx 5.75543 \\
y_{1,4} &\approx -0.264932 \\
I_{1,x,4} &\approx 0.984528 \\
I_{1,y,4} &\approx 0.175226 \\
I_{2,x,4} &\approx 0.964267 \\
I_{2,y,4} &\approx -0.264932 \\
I_{3,x,4} &\approx -0.964267 \\
I_{3,y,4} &\approx -0.264932 \\
I_{4,x,4}=x_{0,3} &\approx -0.935850 \\
I_{4,y,4}=y_{0,3} &\approx 0.352398 \\
\theta_{1,4}=\theta_{1,3} &\approx 0.0919984 \\
y_{2,4}= y_{1,4} &\approx -0.264932
\end{align}
There are infinite solutions for Picture 4 where $x_{2,3}<x_{2,4}<x_{2,5}$. In Picture 4, I use $x_{2,4}=\frac{x_{2,3}+x_{2,5}}{2}$
Finding relation between $x_{2,4}$ and $x_{0,4},y_{0,4}$
\begin{align}
|\overline{V_{0,4}V_{1,4}}| &= |\overline{V_{0,4}I_{4,4}}| + |\overline{I_{4,4}V_{1,4}}|\\
&= |\overline{V_{0,4}I_{4,4}}| + |\overline{I_{3,4}V_{1,4}}|\\
&= \left(\frac{|x_{0,4}|-|I_{4,x,4}|}{cos(\theta_{1,4})}\right) + (|I_{3,x,4}|+|x_{1,4}|)\\
(Area\ Triangle\ V_{0,4}V_{1,4}V_{2,4}) &= \frac{1}{2}|\overline{V_{2,4}V_{1,4}}||\overline{V_{0,4}V_{1,4}}|sin(\theta_{1,4}) \\
\pi &= \frac{sin(\theta_{1,4})}{2}(|x_{2,4}|+|x_{1,4}|)\left(\left(\frac{|x_{0,4}|-|I_{4,x,4}|}{cos(\theta_{1,4})}\right) + (|I_{3,x,4}|+|x_{1,4}|)\right) \\
\frac{2\pi}{sin(0.0919984)} &\approx (|x_{2,4}|+|5.75543|)\left(\left(\frac{|x_{0,4}|-|-0.935850|}{cos(0.0919984)}\right) + (|-0.964267|+|5.75543|)\right) \\
|x_{0,4}| &\approx \frac{34.9789 - 5.75543|x_{2,4}|}{|x_{2,4}|+5.75543} \\
(Area\ Triangle\ V_{0,4}V_{1,4}V_{2,4}) &= \frac{1}{2}(Base\ Length)(Height\ Length) \\
\pi &= \frac{1}{2}|\overline{V_{2,4}V_{1,4}}|(|y_{0,4}|+|y_{1,4}|) \\
2\pi &= (|x_{2,4}|+|x_{1,4}|)(|y_{0,4}|+|y_{1,4}|) \\
2\pi &\approx (|x_{2,4}|+|5.75543|)(|y_{0,4}|+|-0.264932|) \\
|y_{0,4}| &\approx \frac{2\pi}{|x_{2,4}|+5.75543}-0.264932 \\
\end{align}
From Picture 4, $x_{0,4},x_{2,4}<0$ and $y_{0,4}>0$
\begin{align}
x_{0,4} &\approx -\frac{5.75543x_{2,4} + 34.9789}{5.75543-x_{2,4}} \\
y_{0,4} &\approx \frac{2\pi}{5.75543-x_{2,4}}-0.264932 \\
\end{align}
Finding centroid ($C_4$) when $x_{2,3}<x_{2,4}<x_{2,5}$
\begin{align}
C_{x,4} &= \frac{x_{0,4}+x_{1,4}+x_{2,4}}{3} \\
&\approx \frac{-\frac{5.75543x_{2,4} + 34.9789}{5.75543-x_{2,4}}+5.75543+x_{2,4}}{3} \\
&\approx \frac{x_{2,4}^2+5.75543x_{2,4}+1.85401}{3(x_{2,4}-5.75543)} \\
C_{y,4} &= \frac{y_{0,4}+y_{1,4}+y_{2,4}}{3} \\
&\approx \frac{\left(\frac{2\pi}{5.75543-x_{2,4}}-0.264932\right)+(-0.264932)+(-0.264932)}{3} \\
&\approx \frac{0.264932x_{2,4}+0.569598}{5.75543-x_{2,4}} \\
|\overline{OC_4}| &= \sqrt{C_{x,4}^2+C_{y,4}^2} \\
&\approx \sqrt{\left(\frac{x_{2,4}^2+5.75543x_{2,4}+1.85401}{3(x_{2,4}-5.75543)}\right)^2+\left(\frac{0.264932x_{2,4}+0.569598}{5.75543-x_{2,4}}\right)^2} \\
&\approx \frac{\sqrt{x_{2,4}^4+11.5109x_{2,4}^3+37.4645x_{2,4}^2+24.0565x_{2,4}+6.35702}}{3(5.75543-x_{2,4})}
\end{align}
Finding outer perimeter ($P_4$)
\begin{align}
2|\overline{I_{2,4} V_{1,4}}| + 2(Circle\ Curve\ I_{2,4}\ to\ I_{3,4}) =&\ 2|I_{2,x,4}-x_{1,4}| + 2(2\arcsin(I_{2,x,4}))\\
\approx&\ 14.7930
\end{align}
\begin{align}
P_4 =&\ |\overline{V_{2,4} V_{0,4}}| + |\overline{I_{4,4} V_{0,4}}| + |\overline{V_{2,4} I_{3,4}}| + 2|\overline{I_{2,4} V_{1,4}}| + 2(Circle\ Curve\ I_{2,4}\ to\ I_{3,4})\\
=&\ \sqrt{(x_{2,4}-x_{0,4})^2+(y_{2,4}-y_{0,4})^2} + \sqrt{(I_{4,x,4}-x_{0,4})^2+(I_{4,y,4}-y_{0,4})^2} + |x_{2,4}-I_{3,x,4}| + 14.7930 \\
=&\ \sqrt{\left(x_{2,4}-\left(-\frac{5.75543x_{2,4} + 34.9789}{5.75543-x_{2,4}}\right)\right)^2+\left((-0.264932)-\left(\frac{2\pi}{5.75543-x_{2,4}}-0.264932\right)\right)^2} + \sqrt{\left((-0.935850)-\left(-\frac{5.75543x_{2,4} + 34.9789}{5.75543-x_{2,4}}\right)\right)^2+\left(0.352398-\left(\frac{2\pi}{5.75543-x_{2,4}}-0.264932\right)\right)^2} + ((-0.964267)-x_{2,4}) + 14.7930 \\
\approx&\ \frac{\sqrt{x_{2,4}^4 - 23.0217 x_{2,4}^3 + 62.5421 x_{2,4}^2 + 805.274 x_{2,4} + 1263.00}+\sqrt{45.1543 x_{2,4}^2 + 399.397 x_{2,4} + 883.181}}{5.75543-x_{2,4}}+13.8287-x_{2,4}
\end{align}
I will explain about these centroid ($C_4$) function and outer perimeter ($P_4$) function more in Discussion.
$\hspace{150pt}$ Picture 5 : $|\overline{V_0 V_1}|=|\overline{V_2 V_1}|$
Picture 5 is the special case of Picture 4 when |\overline{V_0,5 V_1,5}|=|\overline{V_2,5 V_1,5}|.
If we move $x_{2,5}$ to the right more, we will get the mirror image of Picture 4.
From Picture 4, we get
\begin{align}
x_{1,5} &\approx 5.75543 \\
y_{1,5} &\approx -0.264932 \\
I_{1,x,5} &\approx 0.984528 \\
I_{1,y,5} &\approx 0.175226 \\
I_{2,x,5} &\approx 0.964267 \\
I_{2,y,5} &\approx -0.264932 \\
I_{3,x,5} &\approx -0.964267 \\
I_{3,y,5} &\approx -0.264932 \\
I_{4,x,5} &\approx -0.935850 \\
I_{4,y,5} &\approx 0.352398 \\
\theta_{1,5} &\approx 0.0919984 \\
y_{2,5}= y_{1,5} &\approx -0.264932
\end{align}
Finding $x_{2,5}$ when $x_{2,5}<0$
\begin{align}
(Area\ Triangle\ V_{0,5}V_{1,5}V_{2,5}) &= \frac{1}{2}|\overline{V_{2,5}V_{1,5}}||\overline{V_{0,5}V_{1,5}}|sin(\theta_{1,5}) \\
2\pi &= (|x_{2,5}|+|x_{1,5}|)^2sin(\theta_{1,5}) \\
\frac{2\pi}{sin(0.0919984)} &\approx (|x_{2,5}|+5.75543)^2 \\
x_{2,5} &\approx -2.51458
\end{align}
We can use the formula of $x_{0,4},y_{0,4},C_{x,4},C_{y,4},|\overline{OC_4}|,P_4$ from Picture 4 to calculate those value for Picture 5. But I will calculate those value with geometry instead and use the value I get to check if those formula are correct or not.
\begin{align}
x_{0,5} = x_{1,5} - (|x_{1,5}|+|x_{2,5}|)\cos(\theta_{1,5}) &\approx -2.47961 \\
y_{0,5} = y_{1,5} + (|x_{1,5}|+|x_{2,5}|)\sin(\theta_{1,5}) &\approx 0.494823 \\
C_{x,5}= \frac{x_{0,5}+x_{1,5}+x_{2,5}}{3} &\approx 0.253748 \\
C_{y,5}= \frac{y_{0,5}+y_{1,5}+y_{2,5}}{3} &\approx -0.011680 \\
|\overline{OC_5}|=\sqrt{C_{x,5}^2+C_{y,5}^2} &\approx 0.254017
\end{align}
\begin{align}
2|\overline{I_{2,5} V_{1,5}}| + 2(Circle\ Curve\ I_{2,5}\ to\ I_{3,5}) =&\ 2|I_{2,x,5}-x_{1,5}| + 2(2\arcsin(I_{2,x,5}))\\
\approx&\ 14.7930
\end{align}
\begin{align}
P_5 &= |\overline{V_{2,5} V_{0,5}}| + 2|\overline{V_{2,5} I_{3,5}}| + 2|\overline{I_{2,5} V_{1,5}}| + 2(Circle\ Curve\ I_{2,5}\ to\ I_{3,5}) \\
&= \sqrt{(x_{2,5}-x_{0,5})^2+(y_{2,5}-y_{0,5})^2} + 2|x_{2,5} - I_{3,x,5}| + 14.7930 \\
&\approx 18.6542 \\
\end{align}
When I can use the formula of $x_{0,4},y_{0,4},C_{x,4},C_{y,4},|\overline{OC_4}|,P_4$ from Picture 4 to calculate those value, all of they also give the same value. So, the formula is correct.
$\hspace{150pt}$ Discussion and conclusion
Let start with Picture 2. I think it is possible to calculate each value in Picture 2 at specific $x_{0,2}$ numerically with R. J. Mathar's method. Because of that, I think it is impossible find analytic function of the relation between $x_{0,2}$ and $|\overline{OC_2}|,P_2$ like what I find for Picture 4.
I think it is possbile to find the approximate function in form of series expansion but that is beyond my knowledge, sorry.
As Picture 2 is transition phase between Picture 1 and Picture 3, we can assume that
\begin{align}
x_{0,3}<x_{0,2}<x_{0,1} &\rightarrow -0.935850<x_{0,2}<0 \\
y_{0,1}<y_{0,2}<y_{0,3} &\rightarrow 0.317324<y_{0,2}<0.352398 \\
x_{1,1}<x_{1,2}<x_{1,3} &\rightarrow 5.39554<x_{1,2}<5.75543 \\
y_{1,2}=y_{1,1} &\approx -0.264932 \\
x_{2,1}<x_{2,2}<x_{2,3} &\rightarrow -5.39554<x_{2,2}<-4.42258 \\
y_{2,2}=y_{2,1} &\approx -0.264932
\end{align}
Note : In Picture, I just use $x_{a,2}=\frac{x_{a,1}+x_{a,3}}{2}$ and $y_{a,2}=\frac{y_{a,1}+y_{a,3}}{2}$ when $a=0,1,2$ so all 5 areas aren't complete equal.
With those upper and lower limit, it is still impossible to tell if $|\overline{OC_1}|<|\overline{OC_2}|<|\overline{OC_3}|$ and $P_3<P_2<P_1$ without additional condition which I can't find and proof what they are exactly.
However, I can use the value I get to plot in https://www.desmos.com/calculator
$\hspace{150pt}$ Let start with centroid (C)

Desmos code
(0,0)
x^2+y^2=1
y = (-2.22343*10^{12} x^2 - 1.45103*10^{14} (7.5*10^{9} x^2 - 8.63314*10^{10} x + 2.1424*10^{10})^{0.5} - 1.25663*10^{19} x + 1.53371*10^{17})/(8.3925*10^{12} x^2 - 9.66048*10^{13} x + 2.72416*10^{20})
(0,-0.0708467)
(0.132333,-0.059155)
(0.219683,-0.037873)
(0.253748,-0.011680)
From the graph
- x axis is $C_x$
- y axis is $C_y$
- The radius of circle is 1.
- Black dot is $C_1$
- Red dot is $C_3$
- Blue dot is $C_4$
- Green dot is $C_5$
- Purple graph is postion centroid from $C_4$ formula that we get which is qualify for $0.132333<C_x<0.253748$.
I try to fit those dot with ellipse. It fit pretty well but not fit exactly.

Desmos code
(0,0)
x^2/(0.240477)^2+y^2/(0.0708467)^2=1
x^2/(0.259943)^2+y^2/(0.0708467)^2=1
x^2/(0.257268)^2+y^2/(0.0708467)^2=1
y = (-2.22343*10^{12} x^2 - 1.45103*10^{14} (7.5*10^{9} x^2 - 8.63314*10^{10} x + 2.1424*10^{10})^{0.5} - 1.25663*10^{19} x + 1.53371*10^{17})/(8.3925*10^{12} x^2 - 9.66048*10^{13} x + 2.72416*10^{20})
(0,-0.0708467)
(0.132333,-0.059155)
(0.219683,-0.037873)
(0.253748,-0.011680)
From the graph
- x axis is $C_x$
- y axis is $C_y$
- The radius of circle is 1.
- Red dot is $C_1$
- Blue dot is $C_3$
- Green dot is $C_4$
- Purple dot is $C_5$
- Black graph is postion centroid from $C_4$ formula that we get which is qualify for $0.132333<C_x<0.253748$.
- Blue ellipse pass $C_1$ and $C_3$
- Green ellipse pass $C_1$ and $C_4$
- Purple ellipse pass $C_1$ and $C_5$
Here is a graph between $x_2$ and $|\overline{OC}|$
The scale of x axis and y axis is same, so we don't see much thing in Desmos in this case.
So, I use Wolframalpha to plot instead.

From left to Right, each dot are $|\overline{OC_1}|,|\overline{OC_3}|,|\overline{OC_4}|,|\overline{OC_5}|$
Here is a graph between $x_{2,4}$ and $|\overline{OC_4}|$ in range $x_{2,4}<x_{2,4}<I_{3,x,4}$ or $-4.42258<x_{2,4}<-0.964267$
Note : The formula of $|\overline{OC_4}|$ that we get still work in range $x_{2,5}<x_{2,4}<I_{3,x,4}$ or $-2.51458<x_{2,4}<-0.964267$

The maximum |\overline{OC_4}| is at $x_{2,4}=x_{2,5}$. So, $|\overline{OC_4}|\le|\overline{OC_5}|$
From all graph, it is very like that "the longest possible the distance from the center of the circle to the centroid of the triangle" $=|\overline{OC_5}|\approx0.254017$
For "the shortest possible the distance from the center of the circle to the centroid of the triangle", the value might be equalt to $|\overline{OC_1}|\approx0.0708467$ or slightly less than that in some case of Picture 2 that is very close to Picture 1.
$\hspace{150pt}$ About outer parimeter ($P$)
Here is a graph between $x_2$ and $P$

From left to Right, each dot are $P_1,P_3,P_4,P_5$
From the formula of $P_4$ we get, here is a graph between $x_{2,4}$ and $P_4$ in range $-4.42258<x_{2,4}<-0.964267$

The minimum $P_4$ is at $x_{2,4}=x_{2,5}$. So, $P_4\ge P_5$
From all graph of $P$, it is very like that "the shortest possible length of outer perimeter of new intersecting shape" $=P_5\approx18.6542$
For "the longest possible length of outer perimeter of new intersecting shape", the value might be equalt to $P_1\approx23.0702$ or slightly more than that in some case of Picture 2 that is very close to Picture 1.