This might be a dumb question, but is there a simple way to not invoke the joint probability function and show that $P(X+aY>0|Y<0)$ is increasing or decreasing in $a$ given $X~N(0,1), Y~N(0,1), Corr(X, Y)=\rho>0$, $X$ and $Y$ jointly normal.
My proof is that since $$P(X+a^{'}Y>0|Y<0)=P(X+aY>(a-a^{'})Y|Y<0)$$ for any $a^{'}>a$, then $(a-a^{'})<0$ and $(a-a^{'})Y>0$ for $Y<0$.
Then, $$P(X+a^{'}Y>0|Y<0)=P(X+aY>(a-a^{'})Y|Y<0)<P(X+aY>0|Y<0).$$
So, $P(X+aY>0|Y<0)$ is decreasing in $a$. But I am not sure if I can claim that because $(a-a^{'})Y>0$ for $Y<0$, then $P(X+aY>(a-a^{'})Y|Y<0)<P(X+aY>0|Y<0)$.