4

Statement: Let $n$ and $m$ be two irrational numbers. Then $n^m$ is always irrational.

I think this statement is correct, otherwise can someone give me a counterexample?

Thanks!

Micah
  • 38,108
  • 15
  • 85
  • 133

4 Answers4

11

A simple counterexample: $$e^{\ln 2}$$

Start wearing purple
  • 53,234
  • 13
  • 164
  • 223
7

Exactly one of these is a counterexample: $√3^{√2}$, $(√3^{√2})^{√2} = 3$.

Hint: What happens if $√3^{√2}$ is rational? What happens if it's irrational?

user87690
  • 9,133
2

Counterexample:

Let $a$ be a number such that $\log a\notin\mathbb{N}:e^{\log a}\in\mathbb{Q} $

2

$x = 2^\sqrt2 $, $y=1/\sqrt2$ , $x^y=2$

newzad
  • 4,855