Can we get a decent approximation for I? - yeah, I think so.
The trapezoidal rule gives good results, because $f^{(n)}(0^+)=f^{(n)}(1^-)=0$ for each $n>0$.
Here are my computations, using the following PARI/GP script:
myexp(x)=if(x<-default(realbitprecision),0,exp(x));
foo(x)=myexp(suminf(n=1,(1-zeta(n/x))/n));
goo(n)=sum(k=1,n,foo((k-1/2)/n))/n;
experiment(n)={my(v=0.5);for(k=0,n,v=(v+goo(2^k))/2;print(v))};
$$\small\begin{aligned}
\color{blue}{0.}\color{gray}{5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\\
\color{blue}{0.49}\color{gray}{52524522182130053179347592830935038182739178227155813430014853398627049802084168378189484744909907}\\
\color{blue}{0.4960}\color{gray}{462685813435659657410735621739971142678008217517627767029731808108723102454366861311477695706614}\\
\color{blue}{0.49600}\color{gray}{13263546360125317620145429003484306469288432684171247707533969912066396804032830035759621991914}\\
\color{blue}{0.4960022}\color{gray}{198625044032046958121794546131346992908777037660564955370118897334400210136224769456663842563}\\
\color{blue}{0.49600222206}\color{gray}{45758305327177461401946937544240845348719200390983304017261198780787928938707341701795960}\\
\color{blue}{0.496002222066503}\color{gray}{9435348385778735042737942407442787721881965817897194427569958858545529012872132030474}\\
\color{blue}{0.4960022220665038758722}\color{gray}{291597400222685547259341485206377189559616296300739040313598923621170596850242}\\
\color{blue}{0.496002222066503875872217752736}\color{gray}{8950707201277324066195674090515553311094699224292721471410927775290176}\\
\color{blue}{0.49600222206650387587221775273692568333606393}\color{gray}{08945109817369766264054491087707420065200842499692225784}\\
\color{blue}{0.496002222066503875872217752736925683336063939363714480500547}\color{gray}{9605585454983581866471891249689081986411}\\
\color{blue}{0.496002222066503875872217752736925683336063939363714480500547711451723047013043337657919}\color{gray}{1646691496229}\\
\color{blue}{0.4960022220665038758722177527369256833360639393637144805005477114517230470130433376579194899311327705}\end{aligned}$$