Let $f:\mathbb{R}\to [0,\infty)$ be a measurable function and $f\in L^1$. Prove that for every $\varepsilon >0$ it exists $\delta >0$ such that $E\in \mathcal{M},\: m(E)<\delta \Rightarrow \int_Ef dμ<\varepsilon $
$f$ is non-negative, so $\int_Ef dμ=\sup \{\int_R\phi X_E \:dμ:0\leq\phi\leq f, \phi \:\text{simple and }\phi \in L^1\}$
take $\delta= \varepsilon/ \sum^n a_i$ where $\phi=\sum ^n a_iX_{A_i}$
now If $m(E)<\delta$ $\Rightarrow \int_R\phi X_E \:dμ=\sum ^n a_im({A_i\cap E})<\sum ^n a_i\delta=\varepsilon $
thus we get $ \int_E\phi \:dμ<\varepsilon $ and because $\int_Ef dμ=\sup \{\int_E\phi \:dμ\} \Rightarrow \int_Ef dμ< \varepsilon $
The proof is a little technical, so I have my doubts. Could someone verify that the proof is ok ?