Let $ \alpha \ge 0 $ and let $ A \in {\mathbb R} $ and $ B \in {\mathbb R} $ and $ u_* \in {\mathbb R} $. Consider a following integral:
\begin{equation} {\mathfrak I}_{u_*}^{\alpha,A,B}:= \int\limits_{u_*}^\infty u^\alpha \operatorname{erf}(A+B u) \frac{e^{-u^2/2}}{\sqrt{2\pi}} du \end{equation}
We have compute this quantity for in the special case when $\alpha=0$. We have:
\begin{eqnarray} &&{\mathfrak I}_{u_*}^{0,A,B}=\left(\right. \\ && \left. 2 \pi T\left(\frac{A}{\sqrt{B^2+\frac{1}{2}}},\frac{2 A B+2 B^2 u_*+u_*}{\sqrt{2} A}\right)+2 \pi T\left(u_*,\frac{\sqrt{2} (A+B u_*)}{u_*}\right) \right. \\ % && \left. -sign(A \cdot u_*) \cdot \frac{\pi}{2} \right. \\ % && \left. \right)\frac{1}{\pi}+ \frac{1}{2} \text{erf}\left(\frac{A}{\sqrt{2 B^2+1}}\right) \end{eqnarray}
Here $T(,)$ is the Owen's T function.
The result above has been obtained by differentiating the definition with respect to $A$, then doing the integration over $u$ and then integrating the result with respect to $A$ from $A$ to plus infinity and using the result from here. As always, the Mathematica code snippet verifies the result.
In[5169]:=
ll = {};
For[II = 1, II <= 100, II++,
{A, B, us} = RandomReal[{-10, 10}, 3];
x1 = NIntegrate[Erf[A + B u] phi[u], {u, us, Infinity}];
x2 = 1/2 Erf[A /Sqrt[1 + 2 B^2]] +
1/ [Pi] (-Sign[A us] Pi/2 +
2 [Pi] OwenT[A/Sqrt[1/2 + B^2], (2 A B + us + 2 B^2 us)/(
Sqrt[2] A)] + 2 [Pi] OwenT[us, (Sqrt[2] (A + B us))/us]);
ll = Join[ll, {x1 - x2}]
];
ll // Chop
Out[5171]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
5.0484210^-10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.2706610^-8,
0, 0, 0, -1.1089510^-9, 0, -2.8541410^-10, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2.0869810^-10, 0, -1.8031910^-9, 0, 0, 0, -1.23154*10^-8, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0}
Now, the question is pretty obvious, how do we derive the result in the generic case $\alpha \neq 0 $.