We seek to show that for $m\gt 1$
$$S_{m,n} = \sum_{k=0}^n {m+k\choose m}^{-1}
= \frac{m}{m-1}
\left[1-{m+n\choose m-1}^{-1}\right].$$
We have for the LHS using an Iverson bracket:
$$[w^n] \frac{1}{1-w}
\sum_{k\ge 0} {m+k\choose m}^{-1} w^k.$$
Recall from MSE
4316307
that with $1\le k\le n$
$${n\choose k}^{-1}
= k [z^n] \log\frac{1}{1-z}
(z-1)^{n-k}.$$
We get with $m\ge 1$ as per requirement on $k$
$$m \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{m+1}} \log\frac{1}{1-z}
[w^n] \frac{1}{1-w}
\sum_{k\ge 0} w^k z^{-k} (z-1)^k
\\ = m \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{m+1}} \log\frac{1}{1-z}
[w^n] \frac{1}{1-w} \frac{1}{1-w(z-1)/z}
\\ = m \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{m}} \log\frac{1}{1-z}
\; \underset{w}{\mathrm{res}} \;
\frac{1}{w^{n+1}} \frac{1}{1-w}
\frac{1}{z-w(z-1)}.$$
Now residues sum to zero and the residue at infinity in $w$ is zero by
inspection, so we may evaluate by taking minus the residue at $w=1$ and
minus the residue at $w=z/(z-1).$ For $w=1$ start by writing
$$- m \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{m}} \log\frac{1}{1-z}
\; \underset{w}{\mathrm{res}} \;
\frac{1}{w^{n+1}} \frac{1}{w-1}
\frac{1}{z-w(z-1)}.$$
The residue then leaves
$$- m \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{m}} \log\frac{1}{1-z}
= -m \frac{1}{m-1}.$$
On flipping the sign we get $m/(m-1)$ which is the first term so we are
on the right track. Note that when $m=1$ this term will produce zero. For the residue at $w=z/(1-z)$ we write
$$- m \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{m}} \frac{1}{z-1} \log\frac{1}{1-z}
\; \underset{w}{\mathrm{res}} \;
\frac{1}{w^{n+1}} \frac{1}{1-w}
\frac{1}{w-z/(z-1)}.$$
Doing the evaluation of the residue yields
$$- m \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{m}} \frac{1}{z-1} \log\frac{1}{1-z}
\frac{(z-1)^{n+1}}{z^{n+1}} \frac{1}{1-z/(z-1)}
\\ = m \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{m+n+1}} \log\frac{1}{1-z}
(z-1)^{n+1}
\\ = m [z^{m+n}] \log\frac{1}{1-z}
(z-1)^{n+1}.$$
Using the cited formula a second time we put $n := m+n$ and $k := m-1$
to get
$$m \frac{1}{m-1} {m+n\choose m-1}^{-1}.$$
On flipping the sign we get the second term as required and we have the
claim.
Remark. In the above we have $m\gt 1.$ We get for $m=1$
$$[z^{n+1}] \log\frac{1}{1-z}
(z-1)^{n+1}
= \; \underset{z}{\mathrm{res}} \;
\frac{1}{z^{n+2}} \log\frac{1}{1-z}
(z-1)^{n+1}.$$
Now we put $z/(z-1) = v$ so that $z = v/(v-1)$ and $dz = -1/(v-1)^2 \;
dv$ to get
$$- \; \underset{v}{\mathrm{res}} \;
\frac{1}{v^{n+2}} \log\frac{1}{1-v/(v-1)}
(v-1) \frac{1}{(1-v)^2}
\\ = \; \underset{v}{\mathrm{res}} \;
\frac{1}{v^{n+2}} \frac{1}{1-v} \log(1-v).$$
On flipping the sign we obtain
$$\; \underset{v}{\mathrm{res}} \;
\frac{1}{v^{n+2}} \frac{1}{1-v} \log\frac{1}{1-v} = H_{n+1},$$
again as claimed. This particular value follows by inspection, of
course.