According to page 42 of 1, $\operatorname{arccd}(x, k)=F\left(\arcsin\left(\sqrt{\frac{1 - x^2}{1 - k^2x^2}}\right), k\right)$, where $F(\phi, k)=\int_0^\phi \frac{dt}{\sqrt{1 - k^2\sin^2t^2}}$, and $\mathrm{arccd}$ is the inverse of the $\mathrm{cd}$ Jacobi elliptic function.
To compute this I have access to a function $F_2(\phi|m)=\int_0^\phi \frac{dt}{\sqrt{1 - m\sin^2t^2}}$ (2). I then figure that $F_2\left(\arcsin\left(\sqrt{\frac{1 - x^2}{1 - mx^2}}\right)\bigg| m\right)$ should work. It does for many values, but $\operatorname{cd}(\operatorname{arccd}(0.2 + i, 0.1 - 0.3i), 0.1 - 0.3i)$, which should return $0.2 + i$, instead returns $-0.2 - i$. Why could this be?
EllipticF(sqrt((1-x^2)/(1-k^2*x^2)),k)
I get $a = \operatorname{arccd}(0.2+i,0.1-0.3i) = 1.40083146182067 - 0.924706273973434 i$ and $\operatorname{cd}(\operatorname{arccd}(.,.),.) = .200000000000006 + 1.00000000000000 i$. What is your value for $a$? – gammatester Jul 25 '13 at 09:31