Background
In this week, I am tackling the integral $$\int_{0}^{\infty} \frac{\ln \left(1-x+x^{2}\right)}{1+x^{2}} d x$$ and found that a general formula below in my post, $$ \begin{aligned} J(a)= \int_{0}^{\infty} \frac{\ln \left(1+2 x \sin a+x^{2}\right)}{1+x^{2}} d x=& \pi\left(\ln \left(2 \cos \frac{a}{2}\right)\right)+|a| \ln \left(\tan \frac{|a|}{2}\right)-2 \operatorname{sgn} (a) \int_{0}^{\frac{|a|}{2}} \ln (\tan x) d x \end{aligned} $$
by which, I found a decent formula for the quartic one, $$ \boxed{I(a)=\int_{0}^{\infty} \frac{\ln \left(x^{4}+2 x^{2} \cos 2 a+1\right)}{1+x^{2}} d x=2 \pi \ln \left(2 \cos \frac{a}{2}\right)} $$
Proof: $$ \begin{aligned} I(a)&=\int_{0}^{\infty} \frac{\ln \left(x^{4}+2 x^{2} \cos 2 a+1\right)}{1+x^{2}} d x\\ &=\int_{0}^{\infty} \frac{\ln \left[\left(x^{2}+1\right)^{2}+2 x^{2}(\cos 2 a-1)+1\right]}{1+x^{2}} d x\\ &=\int_{0}^{\infty} \frac{\ln \left[\left(x^{2}+1\right)^{2}-4 x^{2} \sin ^{2} a\right]}{1+x^{2}} d x\\ &=\int_{0}^{\infty} \frac{\ln \left(x^{2}+2 x \sin a+1\right)}{1+x^{2}}+\int_{0}^{\infty} \frac{\ln \left(x^{2}-2 x \sin a+1\right)}{1+x^{2}} d x\\& =J\left(\frac{a}{2}\right)+J\left(-\frac{a}{2}\right)\\& =2 \pi \ln \left(2 \cos \frac{a}{2}\right) \end{aligned} $$
For examples: $$ K=\int_{0}^{\infty} \frac{\ln \left(x^{4}+1\right)}{1+x^{2}} d x= I\left(\frac{\pi}{4}\right)=2 \pi \ln \left(2 \cos \frac{\pi}{8}\right)= \pi \ln (2+\sqrt{2}) $$
$$ \begin{aligned} L=\int_{0}^{\infty} \frac{\ln \left(x^{4}+x^{2}+1\right)}{1+x^{2}} d x&=I\left(\frac{\pi}{6}\right)=2 \pi \ln \left(2 \cos \frac{\pi}{12}\right)=\pi\ln (2+\sqrt{3}) \end{aligned} $$
$$ \begin{aligned} M=\int_{0}^{\infty} \frac{\ln \left(x^{4}-x^{2}+1\right)}{1+x^{2}} d x&=I\left(\frac{\pi}{3}\right)=2 \pi \ln \left(2 \cos \frac{\pi}{6}\right)=\pi\ln 3 \end{aligned} $$ $$ \begin{aligned} N=&\int_{0}^{\infty} \frac{\ln \left(x^{8}+x^{4}+1\right)}{1+x^{2}} dx = L+M=\pi \ln (6+3 \sqrt{3}) \end{aligned} $$ Last but not least,
$$ \boxed{\int_{0}^{\infty} \frac{\ln \left(x^{4}+b x^{2}+1\right)}{1+x^{2}} d x = 2 \pi \ln \left[2 \cos \left(\frac{1}{4} \cos ^{-1}\left(\frac{b}{2}\right)\right)\right]} $$
$$ \begin{aligned} \int_{0}^{\infty} \frac{\ln \left(x^{8}+1\right)}{1+x^{2}}=& \int_{0}^{\infty} \frac{\ln \left(x^{4}+\sqrt{2} x+1\right)}{1+x^{2}} d x +\int_{0}^{\infty} \frac{\ln \left(x^{4}-\sqrt{2} x+1\right)}{1+x^{2}} d x \\ =& 2 \pi \ln \left[2 \cos \frac{1}{4} \cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)\right] +2 \pi \ln \left[2 \cos \frac{1}{4} \cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right] \\ =& 2 \pi \ln \left(2 \cos \frac{\pi}{16}\right)+2 \pi \ln \left(2 \cos \frac{3 \pi}{16}\right)\\ =& 2 \pi \ln \left(2^2 \cos \frac{\pi}{16} \cos \frac{3 \pi}{16}\right)\\=& 2 \pi \ln (\sqrt{2}+\sqrt{2+\sqrt{2}}) \end{aligned} $$
Eager to know whether it can be proved by contour integration.
Your help and solutions are highly appreciated!