If $$a_n=\frac{3 n^5 \left(6596 n^8+924 n^4-2856\right)}{e^{2 \pi n}-1}$$ the ratio test
$$\frac{a_{n+1}}{a_n}=\frac{e^{2 \pi n}-1}{e^{2 \pi (n+1)}-1}\Bigg[1+\frac{13}{n}+\frac{78}{n^2}+O\left(\frac{1}{n^3}\right)\Bigg]\sim e^{-2 \pi }$$ shows an extrely fast convergence.
If we consider
$$b_n=\frac{3 n^5 \left(6596 n^8+924 n^4-2856\right)}{e^{2 \pi n}} < a_n$$ we can explicitely compute the infinite sum since
$$\sum_{n=1}^\infty \frac {n^k}{e^{2 \pi n}}=\text{Li}_{-k}\left(e^{-2 \pi }\right)$$
$$\sum_{n=1}^\infty b_n=\frac{24 x}{(x-1)^{14}} P_{12}(x)$$ where $x=e^{2\pi}$. I shall not type here the polynomial of degree $12$ in $x$ (just because of the size of the coefficients (the smallest is $583$ but the largest is $1875908773452$; their mean is $394936819200$).
Numerically
$$\sum_{n=1}^\infty b_n=817.9491271\cdots$$ Now, consider
$$\frac{1}{e^{2 \pi n}-1 }=\sum_{q=0}^\infty e^{-2 \pi (q+1) n}$$ and
$$\sum_{n=1}^\infty n^k e^{-2 \pi n (q+1)}=\text{Li}_{-k}\left(e^{-2 \pi (q+1)}\right)$$
Now, the computation of the partial sums
$$S_r=\sum_{n=1}^r a_n$$ becomes simple
$$\left(
\begin{array}{cc}
r & S_r \\
5 & 817.98888429499578340114316254727116027126495 \\
10 & 817.99999999999933816348471123533611149002402 \\
15 & 817.99999999999999999999999804247971649003791 \\
20 & 817.99999999999999999999999999999999999847618
\end{array}
\right)$$
Computing
$$S_{100}=818-5.616\times 10^{-246}$$
$$S_{1000}=818-6.628\times 10^{-2689}$$
$818$ is the asymptotoic limit of the summation (it will never reach it).
Edit
It seems that I have been $\large\color{red}{\text{wrong}}$. Using Mathematica, type
S[p_]:=NSum[(3*n^5*(-2856 + 924*n^4 + 6596*n^8))/(-1 + E^(2*n*Pi)), {n, 1, Infinity}, WorkingPrecision -> p+3,PrecisionGoal -> p+3, AccuracyGoal -> p+3, NSumTerms -> p]
The result is always $818.$ followed by $p$ trailing $0$'s.