I believe that I completed this problem correctly but I could use a second set of eye's to verify that I used the right methods. Also if you have a suggestion for a better method of how to solve this I would appreciate any advice.
Prove $$\lim_{x \to -1} x^{3}-2x=1$$ Given $\epsilon > 0,$ let ; $\delta= \min\left \{{1\over2}, {4\epsilon\over11} \right \} $
If $\; 0<\left | x+1 \right | \Rightarrow \delta \; then \; {-1\over4} < \left ( x-{1\over2} \right )^{2}-{5\over4} < {11\over4} $
so $\left | x^{3} - 2x - 1 \right | = \left | x+1 \right |\left | x^{2}-x-1 \right |=\left | x+1 \right |\left | \left ( x-{1\over2} \right )^{2}-{5\over4} \right |<{11\delta\over4}=\epsilon $
scratch work, let $\delta<{1\over2} \Rightarrow \left | x+1\right | < \delta < {1\over2} \Rightarrow{-1\over2} < x+1 < {1\over2} \Rightarrow -2 < x-{1\over2} < -1 \Rightarrow 4 > \left ( x -{1\over2} \right )^{2} > 1 \Rightarrow {11\over4} > \left ( x-{1\over2}\right )^{2}-{5\over4} > {-1\over4}$