Show that $M$ and $\{0_M\}$ are the only ideals of the ring $M=\left\{ \begin{pmatrix}a&b\\ c&d\end{pmatrix} \mid a,b,c,d \in \Bbb R\right\}$. (Hint: Show if $I \ne \{0_M\}$ show that $1_M \in I.)$
Let $I$ be an ideal of $M$ such that $I \ne \{0_M\}$. Then $I$ is closed under addition and for all $r \in M, x \in I$ we have that $rx \in I$.
I think I need to use these properties to show that for any $\begin{pmatrix}a&b\\ c&d\end{pmatrix} \in I$ I can sum and multiply this by some elements to get $\begin{pmatrix}1&0\\ 0&1\end{pmatrix}$.
If I multiply for example $$\begin{pmatrix}1&0\\ 0&0\end{pmatrix}\begin{pmatrix}a&b\\ c&d\end{pmatrix}-\begin{pmatrix}a&b\\ c&d\end{pmatrix}\begin{pmatrix}0&0\\ 0&1\end{pmatrix}=\begin{pmatrix}a&0\\ 0&-d\end{pmatrix}$$ but I don't have control over $a$ and $-b$ in the ideal?