$\displaystyle E=\sum_{k=0}^{m}\binom{m}{k}\dfrac{k\lambda ^k\mu ^{m-k}}{(\lambda +\mu)^m}=\dfrac{1}{(\lambda +\mu)^m}\sum_{k=0}^{m}\binom{m}{k}k\lambda ^k\mu ^{m-k}$
So the problem is how to calculate this series.
$$\sum_{k=0}^{m}\binom{m}{k}k\lambda ^k\mu ^{m-k}$$
The whole problem is shown as below.
Two independent random variables X and Y are Poisson random variables with parameter $\lambda$ and $\mu$,$\quad$For any non-negative integer $k\leq m$,what is $\mathbb{E}[X|X+Y=m]$