Use implicit differentiation to find $\frac{\mbox{dy}}{\mbox{dx}}$ if $$x^my^n = (x+y)^{m+n}$$
Differentiation both sides with respect to $x$:
$$mx^{m-1}y^n + x^mny^{n-1}y' =(m+n)(x+y)^{m+n-1}(1 + y')$$ $$y' = \frac{(m+n)(x+y)^{m+n-1} - mx^{m-1}y^n}{x^mny^{n-1}-(m+n)(x+y)^{m+n-1}}$$ $$y'= \frac{nxy-my^2}{nx^2-mxy}$$ after using given $x^my^n = (x+y)^{m+n}$. The answer given to me is $\frac{y}{x}$. So, it seems $y'$ can be simplified even more.
How do we do this?
Thanks