I was looking for proof of the two problems like this.
The first one is if $$\gcd(a, b) = 1$$ then $$\gcd\left(a, (b^{-1}\ \rm{mod}\ a)\right)=1$$ which $(b^{-1}\ \rm{mod}\ a)$ is the modular multiplicative inverse of $b$ in $\rm{mod}\ a$ .
And the second one is if $$\gcd(a, b_n) = 1\ \text{ and }\ b_n = sb_i\ \text{ and }\ B = b_n\times(b_n^{-1}\ \rm{mod}\ a)$$ then $$\gcd(b_i, \frac{B-1}{a})=1$$
In order to proof this problems I did like this $$A=(b^{-1} \mod\, a)$$ $$bk \equiv 1 \mod a$$ $$k \equiv A \mod a$$ so $$k=ak_1+A $$ now if $A=ak_2$
then $$k=ak_1+ak_2=a(k_1+k_2)=ak_3$$ but $$k=ak_1+A$$ as $$A\neq 0$$ so it's a contradiction as a result $$A\neq ak_1$$ $$\gcd\left(a, A\right)=1$$ $$\gcd\left(a, (b^{-1}\ \rm{mod}\ a)\right)=1$$
for the second one I did like this: $$B=b_nA = b_i\times sA = b_i k$$ so $$\frac{B-1}{a}=\frac{b_i k-1}{a}=D$$ now if $D=b_ik_0 \text{ for } k_0 \in Z$ $$\frac{b_i k-1}{a}=b_ik_0$$ $$\frac{b_i k-1}{ab_i}=k_0=\frac{k-1}{ab_i}-\frac{1}{ab_i}$$ so $$k_0 \notin Z$$ but we said that $k_0 \in Z $ and this one is contradiction too so $$D\neq b_ik_0$$ so $$gcd(D,b_i)=1$$
but I'm not sure if it is true or not!!