The function f(x) is continuous and $f(f(x))=1-x$, for $x\in [0,1]$ then,
(A) $f(\frac{1}{8})+f(\frac{7}{8})=3$
(B) $f(\frac{2}{3})+f(\frac{1}{3})=2$
(C) $f(\frac{5}{6})+f(\frac{1}{6})=1$
(D) None of These
My approach is as follow $f\left( {f\left( x \right)} \right) = 1 - x \Rightarrow f'\left( {f\left( x \right)} \right) \times f'\left( x \right) = - 1$
$f'\left( {f\left( 0 \right)} \right) \times f'\left( 0 \right) = - 1\& f'\left( {f\left( 1 \right)} \right) \times f'\left( 1 \right) = - 1$
$f\left( {f\left( 0 \right)} \right) = 1;f\left( {f\left( 1 \right)} \right) = 0$
Not able to procced from here