Let us consider the map $\phi : \mathbb{C}[X,Y] \to \mathbb{C}[e^{iT}, e^{-iT}]$ defined by $\phi(X)=\frac{e^{iT}+e^{-iT}}{2}$ and $\phi(Y)=\frac{e^{iT}-e^{-iT}}{2i}$. (We can notice that $\phi$ is in particular surjective).
We want to show that $\ker(\phi)=(X^2+Y^2-1)$.
One inclusion is clear.
Now we want to prove the other. Let $P \in \ker(\phi)$ and let us use the euclidean division in $(\mathbb{C}[X])[Y]$: $P = Q(X^2+Y^2-1) +R$ with $\deg_Y(R)<2.$
We can deduce that $R$ is of the form : $R(X,Y)=A(X,Y) + B(X,Y).Y$ with $A,B\in \mathbb{C}[X,Y]$. But because of the hypothesis on the degree of $R$ we can write that $R(X,Y)=A(X,0)+B(X,0).Y$.
Moreover as $P\in \ker(\phi)$ we obtain that $P(\frac{e^{iT}+e^{-iT}}{2},\frac{e^{iT}-e^{-iT}}{2i})=0$ hence $R(\frac{e^{iT}+e^{-iT}}{2},\frac{e^{iT}-e^{-iT}}{2i})=0$. It gives $A(\frac{e^{iT}+e^{-iT}}{2},0)+B(\frac{e^{iT}+e^{-iT}}{2},0).(\frac{e^{iT}+e^{-iT}}{2i})=0.$ Then I am stuck to show that $R(X,Y)=0$.
Thanks in advance !