Observe that $\Bbb Z\cong 2\Bbb Z\cong 3\Bbb Z$.
Let $G=\langle a,b\mid ab=ba\rangle\cong \Bbb Z^2$.
Suppose
$$\begin{align}
B&:=\langle a^2,b^2\rangle_G \\
&\cong 2\Bbb Z\times 2\Bbb Z\\
&\cong \Bbb Z^2.
\end{align}$$
Then
$$\begin{align}
G/B&\cong \langle a,b\mid ab=ba\rangle/\langle a^2,b^2\rangle_G\\
&=\langle a,b\mid a^2, b^2, ab=ba\rangle\\
&\cong \Bbb Z_2\times \Bbb Z_2.
\end{align}$$
But if
$$\begin{align}
H&:=\langle a^2,b^3\rangle_G \\
&\cong 2\Bbb Z\times 3\Bbb Z\\
&\cong \Bbb Z^2,
\end{align}$$
then
$$\begin{align}
G/H&\cong \langle a,b\mid ab=ba\rangle/\langle a^2,b^3\rangle_G\\
&=\langle a,b\mid a^2, b^3, ab=ba\rangle\\
&\cong \Bbb Z_2\times \Bbb Z_3.
\end{align}$$