From an Indian entrance exam:
Which one of the following well-formed formulae is a tautology?
$$\forall x \, \exists y \, R(x,y) \, \leftrightarrow \, \exists y \, \forall x \, R(x, y)\tag A$$ $$( \forall x \, [\exists y \, R(x,y) \, \rightarrow \, S(x, y)]) \, \rightarrow \, \forall x \, \exists y \, S(x, y)\tag B$$ $$[ \forall x \, \exists y \, \left( P(x,y) \, \rightarrow \, R(x, y) \right)] \, \leftrightarrow [ \forall x \, \exists y \left(\neg P(x, y) \, \lor R(x, y) \right)]\tag C$$ $$\forall x \, \forall y \, P(x,y) \, \rightarrow \, \forall x \, \forall y \, P(y, x)\tag D$$
The given answer was option C, which I understand.
This means that option D is not a tautology. But the bound variables $x,y$ cover the same universe, don't they? If so, why would the order of the terms in the function/predicate matter?