I am now going to share a solution on $$S=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+k^2}$$ using the Theorem $\displaystyle \pi \csc (\pi z)=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \frac{(-1)^{k}}{k+z},\tag*{(*)} \textrm{ where } z \not \in Z. $
We first split the series into 2 by partial fractions.
$\displaystyle \begin{aligned}S &=-\frac{1}{2 ki } \sum_{n=0}^{\infty}\left(\frac{(-1)^{n}}{n+ki}-\frac{(-1)^{n}}{n-ki}\right) \\&=-\frac{1}{2 ki}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+ki}-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n-ki}\right) \end{aligned}\tag*{} $
Re-indexing n to convert $S$ back to a single series yields
$\displaystyle \begin{aligned}S&=-\frac{1}{2 ki}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+ki}+\sum_{n=-1}^{-\infty} \frac{(-1)^{n}}{n+ki}+\frac{1}{ki} \right) \\&=-\frac{1}{2 ki}\left(\sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{n+ki}+\frac{1}{ki}\right)\end{aligned}\tag*{} $ Applying the Theorem (*) gives $\displaystyle \begin{aligned}S &=-\frac{1}{2 ki}\left(\pi \csc (k\pi i)+\frac{1}{ki}\right) \\&=-\frac{1}{2 ki}\left(-i \pi \operatorname{csch}(k\pi)+\frac{1}{ki}\right)\\&=\frac{1}{2k}\left(\pi \operatorname{csch} (k\pi)+\frac{1}{2k} \right)\\& \left(\textrm{ OR } \frac{1}{4k^2}+\frac{\pi}{k(e^{\pi}-e^{-\pi})}\right)\end{aligned}\tag*{} $
Your comments and alternative methods are highly appreciated.