First I solved it like this
$\arcsin x=\arccos x \iff \sin(\arcsin x)=\sin(\arccos x)$ implies for $x\in[-1,1]$:
$x=\pm\sqrt{1-x^2} \implies x^2=1-x^2\iff x=\pm \frac 1{\sqrt 2}$ but $-\frac 1{\sqrt 2}\in[-1,1]$ is not solution, what is the mistake?
Did you detect the error by checking? as in irrational equations ?
However
$\arcsin x=\arccos x \iff \arcsin x=\frac{\pi}2-\arcsin x\iff 2\arcsin x=\frac{\pi}2 \iff \arcsin x=\frac{\pi}4$ implies for $x\in[-1,1]$:
$x=\sin \frac{\pi}4=\frac1{\sqrt 2}$.
⟹
and⟺
in all the right places). – ryang Aug 04 '22 at 17:44