For $n \in \mathbb{N}$ and $R \in \left[0,1\right)$, we can rewrite the integral using the complex definition of $\cos{(\phi)}$ and taking the real part as follows:
$$\eqalign{
\int_{0}^{2\pi}\frac{\left(\cos\left(\phi\right)-R\right)\cos\left(n\phi\right)}{1-2R\cos\left(\phi\right)+R^{2}}d\phi &= \Re\int_{0}^{2\pi}\frac{e^{in\phi}\left(\frac{e^{i\phi}+e^{-i\phi}}{2}-R\right)}{1-2R\left(\frac{e^{i\phi}+e^{-i\phi}}{2}\right)+R^{2}}d\phi.
}$$
Letting $z = e^{i\phi}$, introducing the unit circle contour (let's call is $C$), traversing in the positive direction, and doing a lot of algebra, we get the integral to equal
$$\Re\left(\frac{i}{2}\oint\frac{z^{n-1}\left(z^{2}-2Rz+1\right)}{\left(z-R\right)\left(Rz-1\right)}dz\right).$$
Finding the singularities, we set the denominator equal to $0$ to get the set of zeroes $z_0 \in \left\{R,\frac{1}{R}\right\}$. Since $R \in \left[0,1\right)$, we know that $z = \frac{1}{R}$ is not inside $C$, so we can make $z_0 = R$ our pole to take the residue. Then the integral equals
$$\Re\left(\frac{i}{2}2\pi i \operatorname{Res}\left(\frac{z^{n-1}\left(z^{2}-2Rz+1\right)}{\left(z-R\right)\left(Rz-1\right)}, z = R\right)\right) = \Re\left(-\pi\lim_{z \to R}(z-R)\frac{z^{n-1}\left(z^{2}-2Rz+1\right)}{\left(z-R\right)\left(Rz-1\right)}\right).$$
Taking that limit and simplifying leads to the integral to equal $\pi R^{n-1}.$ You can do a similar method for the $n=0$ case as well.