Exercise: Suppose $V$ is finite-dimensional with $\dim V \ge 2$. Prove that there exist $S,T \in L(V, V)$ such that $ST \ne TS$
$L(V, V)$ denotes the set of all linear maps from $V\to V$.
Proof: Define $T : V\to V$ by $T(a_1v_1+\dots+a_nv_n)=2a_1v_1+\dots+a_nv_n$ and define $S: V\to V$ by $S(a_1v_1+\dots+a_nv_n)=(a_1+\dots+a_n)v_1+\dots+(a_1+\dots+a_n)v_n$. Pick non-zero scalars $a_1,\dots,a_n\in F$.
We see that $(ST)v=S(2a_1v_1+\dots+a_nv_n)=(2a_1+\dots+a_n)v_1+\dots+(2a_1+\dots+a_n)v_n$ and
$(TS)v=T((a_1+\dots+a_n)v_1+\dots+(a_1+\dots+a_n)v_n)=(2a_1+\dots+2a_n)v_1+\dots+(a_1+\dots+a_n)v_n$.
This shows that $ST\ne TS$.
Is this solution correct?
Edit: Let $v_1,\dots,v_n$ be a basis of V.
The statement to be proved is: $$\forall V, \mathrm{dim} V \ge 2 \implies ( \exists S, T ; \mathrm{s.t.} ;ST \neq TS)$$
To prove that it is true, one has to consider all finite dimensional $V$, not just dim$V$=2.
The negation is an existential statement, namely $$\exists V, \mathrm{dim} V \ge 2 ; \mathrm{and} ; ST=TS; \forall ; S, T$$
To prove the negation is true, an example suffices.
But we are NOT going to prove that the negation is true. Right?
– Li Kwok Keung Aug 04 '22 at 09:30