2

I'm computing the indefinite integral of $\log(\sin(x))$; this is the my solution with integration by substitution:

$$ \begin{align} &\int\log(\sin(x))dx\\ = &\int\log(y)\frac{1}{\cos(x)}dy \\ = &\frac{1}{\cos(x)}\int\log(y)dy \\ = &\frac{1}{\cos(x)}(y\log(y)-y) \\ = &\tan(x)\log(\sin(x))-\tan(x) \end{align} $$

Because I did the substitution $y=\sin(x), dy=\cos(x)dx\rightarrow dx=\frac{dy}{\cos(x)}$.

Wolfram online gives a different result; where is the my error?

amWhy
  • 209,954

2 Answers2

4

$\cos(x)$ is not a constant, because $x$ depends on $y$, so you can't pull $\cos(x)$ out of the integral.

Julian Rosen
  • 16,142
1

As Cameron said, this indefinite integral is not elementary. Maple does it in terms of a dilogarithm... $$ \int \ln \left( \sin \left( x \right) \right) \,{dx}= -x\ln \left( 1-{{\rm e}^{2\,ix}} \right) +x\ln \left( \sin \left( x \right) \right) +\frac{i{x}^{2}}{2}+\frac{i\,{\rm Li_2} \left( {{\rm e} ^{2\,ix}} \right)}{2} $$

GEdgar
  • 111,679