5

Look at the decimal expansion for the alternating sum for $\log(2)$ summed upto $n=100000$ and subtract it with the decimal expansion for the actual value for $\log(2)$:

$$\log 2=\sum_{n=1}^{100000}\frac{(-1)^{n-1}}n$$

(* Mathematica start*)
digits=100;
N[Sum[(-1)^(n + 1)/n, {n, 1, 100000}], digits]
N[Log[2], digits]
%% - %
(*end*)

Decimal expansion for the alternating sum for $\log(2)$ truncated at $n=100000$:

0.69314218058494530941598212145842656807539388436033275412059363449353\
01469694042252941638997436445553

Decimal expansion of actual value for $\log(2)$

0.69314718055994530941723212145817656807550013436025525412068000949339\
36219696947156058633269964186875

The difference between the truncated series and actual value for $\log(2)$:

-4.9999750000000012499999997500000001062499999225000000863749998634750\
00290490311699427252774132*10^-6 

Notice how it is correct at many decimal places beyond the first error.

I find that strange. It is like it suggests that there is a series acceleration that would correct this.

By guessing and adding fractions that I looked up in the OEIS, it suggests that the alternating sum together with the correcting part for parameters $p = 4$ and $r = 10$ is:

$$\log(2)=\sum _{n=1}^{6\ 10 p r} \frac{2 (-1)^n \left(\left(1-2^{-2 n}\right) \zeta (2 n) \Gamma (2 n)\right)}{\pi ^{2 n} \left(r^{2 p}\right)^n}+\sum _{n=1}^{r^p} \frac{(-1)^{n+1}}{n}+\frac{r^{-p}}{2} \;\;\;\;\;\;\;\;(\ast)$$

For $r^p=10^4=10000$, this gives the decimal expansion of $\log(2)$ to $6004$ correct digits, as shown by this Mathematica program:

(*start*)
p = 4;
r = 10;
digits = r^p;
N[Sum[(-1)^(n + 1)/n, {n, 1, r^p}] + 1/2*r^(-p) + 
   Sum[(-1)^(n)*2*(Gamma[2 n]*(1 - 2^(-2 n))*Zeta[2 n])/
       Pi^(2 n)/(r^(2*p))^n, {n, 1, 6*10*r*p}], digits];
N[Log[2], digits];
%% - %
(*end*)

If this is a known result I apologize.

What I really would like to know is how does this generalizes to series of similar form for $\log(3),\log(4),\log(5)$ and so on. Also, the requirement that $r=10$ is not optimal, and I don't know how to generalize it away so that $r^p$ can be any integer.

For $\log(3)$ with Mathematica:

I found the following repeating decimal expansion for the difference between the decimal expansion from the series:

$$\text{log3}=\sum _{n=0}^{333333} \left(\frac{1}{(3 n+1)}+\frac{1}{(3 n+2)}-\frac{2}{(3 n+3)}\right) \;\;\;\;\; (\ast\ast)$$

truncated at $n=333333$ and the actual decimal expansion for $\log(3)$:

(*start*)
nn = 333333;
s = 1;
N[Sum[1/(3*n + 1)^s + 1/(3*n + 2)^s - 2/(3*n + 3)^s, {n, 0, nn}], 100]
N[Log[3], 100]
%% - %
(*end*)

Truncated series for $\log(3)$:

1.09861128867077635139526057022385909953625944698030440640216033343750\
3992932594561746334595530692166

Decimal expansion for the actual value of $\log(3)$:

1.09861228866810969139524523692252570464749055782274945173469433363749\
4293218608966873615754813732089

Difference between decimal expansions for truncated series and actual $\log(3)$:

-9.9999733333999998466669866660511123111084244504533253400019999030028\
6014405127281159283039922*10^-7

Here again we could try to guess the fractions that are found inbetween the repeating digits:

(*Mathematica start*)
-9.9999733333999998466669866660511123111084244504533253400019999030028\
6014405127281159283039922419278832912630462820405230189615775`93.\
65812459130527*^-7
(%*3) - 4/5*10^(-6 - 5)
% + 1/5*10^(-16)
% - (1 - 54/100)*10^(-22)
% + (1 - 5/100)*10^(-28)
(*end*)

{-4/510^(-6 - 5), +1/ 510^(-16), -(1 - 54/100)10^(-22), +(1 - 5/100)10^(-28)}

The guess simplifies to the first few fractions:

$$\left\{-\frac{1}{125000000000},\frac{1}{50000000000000000},-\frac{23}{500000000000000000000000},\frac{19}{200000000000000000000000000000}\right\}$$

An OEIS search.

Question:

Can you generalize the formula in $(\ast)$ for $\log(2)$ to apply to the formula for $\log(3)$ in $(\ast\ast)$?

That is can you generalize this formula:

$$\log(2)=\sum _{n=1}^{6\ 10 p r} \frac{2 (-1)^n \left(\left(1-2^{-2 n}\right) \zeta (2 n) \Gamma (2 n)\right)}{\pi ^{2 n} \left(r^{2 p}\right)^n}+\sum _{n=1}^{r^p} \frac{(-1)^{n+1}}{n}+\frac{r^{-p}}{2} \;\;\;\;\;\;\;\;(\ast)$$

to apply to this formula: $$\log(3)=\sum _{n=0}^{\infty} \left(\frac{1}{(3 n+1)}+\frac{1}{(3 n+2)}-\frac{2}{(3 n+3)}\right) \;\;\;\;\; (\ast\ast)$$

Or even:

$$\log(4)=\sum _{n=0}^{n=\infty} \left(\frac{1}{(4 n+1)}+\frac{1}{(4 n+2)}+\frac{1}{(4 n+3)}-\frac{3}{(4 n+4)}\right)$$

and so on.

Bill Dubuque
  • 272,048
Mats Granvik
  • 7,396

1 Answers1

0

This is not an answer, only did the series part. Is there any idea on the series acceleration part with Zeta function?

$$\begin{align} S_n&=\sum _{i=0}^{n} \left(\frac{1}{ki+1}+\frac{1}{ki+2}+...+\frac{1}{ki+k-1}-\frac{k-1}{ki+k}\right)\\ \\ &=\sum _{i=0}^{n} \left(\frac{1}{ki+1}+\frac{1}{ki+2}+...+\frac{1}{ki+k-1}+\frac{1}{ki+k}-\frac{k}{ki+k}\right)\\ \\ &=\sum _{i=0}^{n} \left(\frac{1}{ki+1}+\frac{1}{ki+2}+...+\frac{1}{ki+k-1}+\frac{1}{ki+k}\right)-\sum _{i=0}^{n}\frac{k}{ki+k}\\ \\ &=H_{nk+k}-\sum _{i=0}^{n}\frac{1}{i+1}\\ \\ &=H_{nk+k}-H_{n+1}\\ \\ \end{align}$$

Asymptotically, $H_p=\gamma+\ln(p)+O\left(\frac{1}{p}\right)$

$$S=\lim_{n\to\infty}S_n=\lim_{n\to\infty}(H_{nk+k}-H_{n+1})=\ln(k)$$

Therefore,

$$\ln(k)=\sum _{i=0}^{\infty} \left(\frac{1}{ki+1}+\frac{1}{ki+2}+...+\frac{1}{ki+k-1}-\frac{k-1}{ki+k}\right)$$

MathFail
  • 21,128
  • Yes correct, from what I can see, but what about the series acceleration part with Zeta and Gamma in it? – Mats Granvik Jul 30 '22 at 17:03
  • I have no clue on that part, any hint? @MatsGranvik – MathFail Jul 30 '22 at 17:05
  • I don't have any clue either. The Gamma zeta part was found by looking up the fractions inbetween the repeating digits in the OEIS and taking the formula given for the fractions. There is no formula in the OEIS at the decimal expansion for Log(2) https://oeis.org/A002162 that is the same as $(\ast)$ if I looked correctly. – Mats Granvik Jul 30 '22 at 17:07
  • These are the fractions for log(2) that I looked up in the OEIS: {-2510^-14,+12510^-27,-2510^-38,+1062510^-52,-77510^-62,+(86375)10^-75,-(136525)*10^-86} giving numerators: 1, 1, 1, 17, 31, 691,... which is: https://oeis.org/A002425 – Mats Granvik Jul 30 '22 at 17:15