In my post, I had found an elegant integral $$\int_{0}^{\frac{\pi}{4}} \ln (\tan x)~ d x=-G. $$ I then try to generalise the integral $$ I_{n}=\int_{0}^{\frac{\pi}{4}} \ln ^{n}(\tan \theta) d \theta, ~~~~\textrm{ where }n\in N, $$ by letting $e^{-x}=\tan \theta$. Consequently $-e^{-x} d x=\left(1+e^{-2 x}\right) d \theta$ converts the integral to
$$ \begin{aligned} I_{n} &=\int_{\infty}^{0} \frac{\ln ^{n}\left(e^{-x}\right)\left(-e^{-x}\right)}{1+e^{-2 x}} d x =\int_{0}^{\infty} \frac{(-x)^{n} e^{-x}}{1+e^{-2 x}} d x \end{aligned} $$
Expanding the integrand into a power series yields $$ \begin{aligned} I_{n} &=(-1)^{n} \int_{0}^{\infty} \sum_{k=0}^{\infty}(-1)^{k} x^{n} e^{-(2 k+1) x} d x\\&=(-1)^{n} \sum_{k=0}^{\infty}(-1)^{k} \int_{0}^{\infty} x^{n} e^{-(2 k+1) x} d x \end{aligned} $$ Letting $(2k+1)x\mapsto x$ transforms the integral into a Gamma function. $$ \\ \boxed{\int_{0}^{\frac{\pi}{4}} \ln ^{n}(\tan \theta) d \theta =(-1)^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\left({2 k+1}\right)^{n+1}} \int_{0}^{\infty}x^ne^{-x} d x=(-1)^{n} \beta(n+1) \Gamma(n+1)} $$
where $\beta(s)$ is the Dirichlet beta function.
For examples, $$ \begin{array}{l} \displaystyle I_{1}=\int_{0}^{\frac{\pi}{4}} \ln (\tan \theta)d\theta=-\beta(2) \Gamma(2)=-G \\ \displaystyle I_{2}=\int_{0}^{\frac{\pi}{4}} \ln ^{2}(\tan \theta) d\theta =\beta(3) \Gamma(3)=\frac{\pi^{3}}{32} \cdot 2=\frac{\pi^{3}}{16} \\ \displaystyle I_{10}=\int_{0}^{\frac{\pi}{4}} \ln ^{10}(\tan \theta) d\theta =\beta(11) \Gamma(11)=\frac{50521\pi^{11}}{14863564800}\times 10!= \frac{50521 \pi^{11}}{4096} \approx 3.62878 \times 10^{6} \end{array} $$
Looking forwards to getting more alternate solutions and opinions from you!