3

I am trying to evaluate the following integral by parts, but no answers so far.$$\int_{0}^{\infty}\left[\frac{x}{(1+ax)(1+x)}\right]^{K}dx,$$ where $K\in\mathbb{N}$ and $a>0$ is a constant. Can anyone help me?

yyzhang
  • 161
  • Mathematica 9.01 produces $$a^{-K} Gamma[-1 + K] Gamma[1 + K] Hypergeometric2F1Regularized[-1 + K, K, 2 K, (-1 + a)/a].$$ – user64494 Jul 23 '13 at 11:07
  • 2
    The integrand can be rewritten as $$ \left( {\frac {1}{ \left( a-1 \right) \left( 1+x \right) }}-{\frac { 1}{ \left( a-1 \right) \left( ax+1 \right) }} \right) ^{K}. $$ Then try to apply the binomial theorem. – user64494 Jul 23 '13 at 11:16

2 Answers2

1

If $a=1$ then the integral becomes $$I=\int_{0}^{\infty}\frac{x^K}{(1+x)^{2K}}dx$$ Letting $\displaystyle \frac{1}{1+x}=z$ we get $$I=\int_{0}^{1}z^{K-2}(1-z)^K dz=\beta\left(K-1,K+1\right)$$

I'll write down the results for $a\ne 1$ shortly.

1

Here is a formula in terms of the associated Legendre polynomials

$$\frac{ 2\,{4}^{k-1}\Gamma\left( \frac{1}{2}+k \right)\beta \left( k+1,k-1 \right)}{ {a}^{3/4} \left( a-1 \right) ^{k-1/2} } P^{\frac{1}{2}}_{\frac{1}{2}-k}\left( {\frac {a+1}{2\sqrt {a}}}\right)\quad \left\{k\geq 2 \cap k\in \mathbb{N}\right\},$$

where $\beta(u,v)$ is the beta function.

added: For the case $a=1$, we can find the answer $$ {\frac {2\,{4}^{-k}\,\sqrt {\pi }\,\Gamma \left( k+1 \right) }{ \left( k- 1 \right) \Gamma \left( k+1/2 \right) }} \quad \left\{k\geq 2 \cap k\in \mathbb{N}\right\},$$

by plugging $a=1$ in the integral using this technique.