0

I try to find $\displaystyle555^{555^{555}} \bmod{1000}$ and I find that $555^{555^{555}}\equiv375 \pmod{1000}$ but Wolframalpha gives me $555^{555^{555}}\equiv875 \pmod{1000}$. Are there any mistakes in my attempt?

My attempt

$\begin{align*}555^{555}={\left(500+55\right)}^{555}=\sum_{n=0}^{555}\binom{555}{n}{500}^{555-n}55^n&=\cdots+555\left(500\right){\left(55\right)}^{554}+{55}^{555}\\ &\equiv500+{\left(50+5\right)}^{555}\pmod{1000}\\&\equiv500+555\left(50\right){\left(5\right)}^{554}+5^{555}\pmod{1000}\\&\equiv500+750+125\pmod{1000}\\&\equiv375\pmod{1000}\end{align*}$ $\begin{align*}555^{375}={\left(500+55\right)}^{375}=\sum_{n=0}^{375}\binom{375}{n}{500}^{375-n}55^n&=\cdots+375\left(500\right){\left(55\right)}^{374}+{55}^{375}\\ &\equiv500+{\left(50+5\right)}^{375}\pmod{1000}\\&\equiv500+375\left(50\right){\left(5\right)}^{374}+5^{375}\pmod{1000}\\&\equiv500+750+125\pmod{1000}\\&\equiv375\pmod{1000}\end{align*}$

Jyrki Lahtonen
  • 133,153

3 Answers3

2

You asked : Are there any mistakes in my attempt?

There are many comments on various Procedures and theorems to use to find the Answer.
I will leave that to you to explore.

Here I am only going to answer where you went wrong.
Though there are other ways to go about this, your approach is not wrong.
With the correction to your mistake, we will get the correct answer.


$\begin{align*} 555^{555} & = {\left(500+55 \right)}^{555} = \sum_{n=0}^{555}\binom{555}{n}{500}^{555-n}55^n = \cdots+555\left(500\right){\left(55\right)}^{554}+{55}^{555}\\ & \equiv 500+{\left(50+5\right)}^{555}\pmod{1000}\\ & \equiv 500+\cdots+[[\frac{(555!)}{(2!553!)}\left(50\right)^{2}{\left(5\right)}^{553}]]+555\left(50\right){\left(5\right)}^{554}+5^{555}\pmod{1000}\\ & \equiv 500+X+750+125\pmod{1000}\\ & \equiv X+375\pmod{1000} \end{align*}$


The term in $[[ .... ]]$ was missing.
That missing term is $X \equiv [[\frac{(555!)}{(2!553!)}\left(50\right)^{2}{\left(5\right)}^{553}]] \equiv (555) (277) (50)^{2} (5)^{553} \equiv 500 \mod {1000}$

We then get $500+375 \equiv 875$ which is the Correct Answer.

Prem
  • 9,669
2

First of all the value mod 1000 does not mean that its power cycle is also 1000 as a cycle, so you cannot mod 1000 to it's power. You need find it's cycle.

$555^0 \equiv 1 \pmod{1000}$

$555^1 \equiv 555 \pmod{1000}$

$555^2 \equiv 25 \pmod{1000}$

$555^3 \equiv 875 \pmod{1000}$

$555^4 \equiv 625 \pmod{1000}$

$555^5 \equiv 875 \pmod{1000}$

So the cycle is $2$, start from power $= 3$

$555^{555^{555}} \equiv 555^{3 + (555^{555} - 3 \pmod 2)} \pmod{1000}$

$\equiv 555^{3} \pmod{1000}$

$\equiv 875 \pmod{1000}$


In fact, we get that 2 is its cycle period, so 1000 can also be considered as a cycle

But your calculation process is not entirely correct, leaving out the secondary terms

$\begin{align*}555^{375}={\left(500+55\right)}^{375}&=\sum_{n=0}^{375}\binom{375}{n}{500}^{375-n}55^n \\ &=\cdots+375\left(500\right){\left(55\right)}^{374}+{55}^{375}\\ &\equiv500+{\left(50+5\right)}^{375}\pmod{1000}\\ &\equiv500+\binom{375}{2}50^2 5^{373}+375\left(50\right){\left(5\right)}^{374}+5^{375}\pmod{1000}\\ &\equiv500+500+750+125\pmod{1000}\\ &\equiv875\pmod{1000}\end{align*}$

YeXiaoRain
  • 136
  • 5
0

Another way

$555^2\equiv5^2\pmod{1000}$ and $(5^2)^n\equiv5^3\pmod{1000}$ for $n\gt1$. It follows $$555^{2\cdot277+1}=555^{2\cdot277}\cdot555\equiv5^3\cdot555\equiv875\pmod{1000}$$ Which is equivalent to$$555^{555}=875+1000m$$Now $$555^{875+1000m}\pmod{1000}=555^{2(437+500m)+1}$$ Then $$\displaystyle555^{555^{555}} \bmod{1000}\equiv625\cdot555\equiv875\pmod{1000}$$

Piquito
  • 29,594