I try to find $\displaystyle555^{555^{555}} \bmod{1000}$ and I find that $555^{555^{555}}\equiv375 \pmod{1000}$ but Wolframalpha gives me $555^{555^{555}}\equiv875 \pmod{1000}$. Are there any mistakes in my attempt?
My attempt
$\begin{align*}555^{555}={\left(500+55\right)}^{555}=\sum_{n=0}^{555}\binom{555}{n}{500}^{555-n}55^n&=\cdots+555\left(500\right){\left(55\right)}^{554}+{55}^{555}\\ &\equiv500+{\left(50+5\right)}^{555}\pmod{1000}\\&\equiv500+555\left(50\right){\left(5\right)}^{554}+5^{555}\pmod{1000}\\&\equiv500+750+125\pmod{1000}\\&\equiv375\pmod{1000}\end{align*}$ $\begin{align*}555^{375}={\left(500+55\right)}^{375}=\sum_{n=0}^{375}\binom{375}{n}{500}^{375-n}55^n&=\cdots+375\left(500\right){\left(55\right)}^{374}+{55}^{375}\\ &\equiv500+{\left(50+5\right)}^{375}\pmod{1000}\\&\equiv500+375\left(50\right){\left(5\right)}^{374}+5^{375}\pmod{1000}\\&\equiv500+750+125\pmod{1000}\\&\equiv375\pmod{1000}\end{align*}$