In a recent post
I evaluated the required Integral using a very interesting result that $$\sum_{k=1}^{\infty} \frac{\phi^{-2k}}{k^2}=\text{Li}_2(1/\phi^2)=\frac{\pi^2}{15}-\ln^2 \phi,~~ \phi=\frac{1+\sqrt{5}}{2}\qquad(*)$$ See https://en.wikipedia.org/wiki/Polylogarithm#Relationship_to_other_functions
The question is: How to prove (*)?