0

This question appeared in my exam (in my university entrance test).

Question: Does there exist a real valued differentiable function such that $\lim_{x\rightarrow \infty} f(x) = 2$ and $\lim_{x\rightarrow \infty} f'(x) =1$?

My attempt: $2=\lim_{x\to\infty}f(x)=\lim_{x\to\infty}\frac{e^xf(x)}{e^x}=\lim_{x\to\infty}(f(x)+f'(x))=2+1=3$. Hence contradiction!

Am I correct?

$\textbf{Has anyone seen this problem before in college contests, problem book etc.?}$ If you have seen this problem before please let me know.

Robert Z
  • 145,942
user1234
  • 286

1 Answers1

2

If $\lim_{x \rightarrow \infty} f'(x) = 1$, then there is some $C > 0$ such that $f'(x) > \frac{1}{2}$ for all $x \geq C$. It follows that $$ \lim_{x \rightarrow \infty} f(x) = \lim_{x \rightarrow \infty} f(C) + \int^x_C f'(s)~\mathrm{d}s \geq f(C) + \int^x_C \frac{1}{2}~\mathrm{d}s = f(C) + \frac{x-C}{2} \overset{x \rightarrow \infty}{\longrightarrow} \infty. $$ So such function can't exist.