I need to calculate the determinant of the following $4 \times 4$ matrix:
\begin{bmatrix}x&1&1&1\\1&x&1&1\\1&1&x&1\\1&1&1&x\end{bmatrix}
I heard there is a way by separating the matrix into blocks, but I couldn't succeed in doing that.
I need to calculate the determinant of the following $4 \times 4$ matrix:
\begin{bmatrix}x&1&1&1\\1&x&1&1\\1&1&x&1\\1&1&1&x\end{bmatrix}
I heard there is a way by separating the matrix into blocks, but I couldn't succeed in doing that.
Useful trick - if the sum of each row of the matrix is the same (in this case - $x+3$), then you can simplify the determinant via the following elementary operations:
Add all columns to the first column.
Subtract the first row from all rows.
In your case:
$$\begin{vmatrix}x&1&1&1\\1&x&1&1\\1&1&x&1\\1&1&1&x\end{vmatrix} =\begin{vmatrix}x+3&1&1&1\\x+3&x&1&1\\x+3&1&x&1\\x+3&1&1&x\end{vmatrix} =\begin{vmatrix}x+3&1&1&1\\0&x-1&0&0\\0&0&x-1&0\\0&0&0&x-1\end{vmatrix}$$
Your matrix is now triangular, and the determinant is the product of diagonal elements.
Alternative:
$A=\begin{bmatrix}x&1&1&1\\1&x&1&1\\1&1&x&1\\1&1&1&x\end{bmatrix}$
Since each row sum is $x+3$ , it's an eigenvalue of $A$ $($ see here $) $
It is clear that if $x=1$ , then $A$ will be a rank $1$ matrix.
Hence $x-1$ is an eigenvalue as $\det(A-(x-1) I) =0$
Infact Eigen space corresponding to $x-1$ has dimension $3$ as
$A-(x-1)I=\begin{bmatrix}1&1&1&1\\1&1&1&1\\1&1&1&1\\1&1&1&1\end{bmatrix}$
has $3$ dimensional null space.
Hence Algebraic multiplicity of $(x-1) $ is $3$ $($ as it is bigger than geometric multiplicity and no. of distinct eigen values can't exceed $4$ $) $
Now $\det(A) =\Pi_{\lambda\in \operatorname{spec}{A}} \space {\lambda}=(x-1)^3(x+3)$
(determinant is the product of all eigenvalues )
In the special case $$ \left( {\begin{array}{*{20}c} A & B \\ B & A \\ \end{array}} \right) $$ where $A,B$ are $2×2$ blocks you can use the formula $$ \det \left( {\begin{array}{*{20}c} A & B \\ B & A \\ \end{array}} \right) = \det \left( {A - B} \right)\det \left( {A + B} \right) $$ In our case you have $$ \det \left( {A - B} \right) = \det \left( {\begin{array}{*{20}c} {x - 1} & 0 \\ 0 & {x - 1} \\ \end{array}} \right) = (x - 1)^2 $$ while $$ \det \left( {A + B} \right) = \det \left( {\begin{array}{*{20}c} {x + 1} & 2 \\ 2 & {x + 1} \\ \end{array}} \right) = x^2 + 2x - 3 = \left( {x - 1} \right)\left( {x + 3} \right) $$ whence $$ \det \left( {\begin{array}{*{20}c} A & B \\ B & A \\ \end{array}} \right) = \left( {x - 1} \right)^3 \left( {x + 3} \right) $$