I have studied that the Lie algebra $sl(2,\mathbb{Z})=\{A\in M_2(\mathbb{Z}):tr(A)=0\}$ is a perfect Lie algebra over the base ring $\mathbb{Z}$, i. e. $$sl(2,\mathbb{Z})=[sl(2,\mathbb{Z}),sl(2,\mathbb{Z})],$$ where $[sl(2,\mathbb{Z}),sl(2,\mathbb{Z})]=\ \langle AB-BA:A,B\in sl(2,\mathbb{Z})\rangle$. Now a basis of $sl(2,\mathbb{Z})$ is the set $\bigg\{\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}\bigg\}$.
My question is that if $sl(2,\mathbb{Z})$ is perfect then each of the basis element can be written in the form of $AB-BA$. I can write the matrix $\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}=[AB-BA]$, where $A= \begin{pmatrix} 0 & 0\\ 1 & -0 \end{pmatrix}$ and $B= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$. But I am not able to write the matrices $A$ and $B$ in this form. I request you to help me.