The definition of $e$ as continual compounding is found computationally as: $\lim_{n\to \infty} \Big(1+\dfrac{1}{n}\Big)^n = e$
If we let $h=\dfrac{1}{n}$, then $e = \lim_{h\to 0} (1+h)^{\frac{1}{h}}$
Differentiating $e^x$ by first principles we get:
$f(x)=e^x$
$f'(x)=\lim_{h\to 0} \dfrac{e^{x+h}-e^x}{h}$
$=\lim_{h\to 0} \dfrac{e^x\times e^h-e^x}{h}$
$=\lim_{h\to 0} \dfrac{e^x(e^h - 1)}{h}$
$=e^x \times \lim_{h\to 0} \dfrac{e^h - 1}{h}$
Now, I know the result of the limit is going to be $1$. So my intuition is that I should be able to substitute in the compounding expression for $e$ and then manipulate the limit in the derivative to yield $1$. So by reverse engineering the expected solution I have the following:
$\lim_{h\to 0} \dfrac{e^h - 1}{h} = \lim_{h\to 0} \dfrac{[\lim_{h\to 0} (1+h)^{\frac{1}{h}}]^h - 1}{h}$
$= \lim_{h\to 0} \dfrac{[(1+h)^\frac{1}{h}]^h -1}{h}$
$= \lim_{h\to 0} \dfrac{(1+h)-1}{h}$
$= \lim_{h\to 0} \dfrac{h}{h}$
$= \lim_{h\to 0} 1$
$= 1$
My question is regarding this step:
$\lim_{h\to 0} \dfrac{[\lim_{h\to 0} (1+h)^{\frac{1}{h}}]^h - 1}{h} = \lim_{h\to 0} \dfrac{[(1+h)^\frac{1}{h}]^h -1}{h}$
I believe it must be true since it produces the expected result, but I'm unsure how to justify removing the nested limit.