I was trying as exercise to derive the Laplacian in spherical coordinates using riemannian geometry tools.
Definition If $\mathcal{M}$ is a smooth manifold of dimension $n$ and $\left\{E_1,\ldots,E_n \right\}$ is an orthonormal frame then we define for $f : \mathcal{M} \to \mathbb{R}$ $$ \text{grad} f = \sum_{i=1}^n E_i(f)E_i $$ and $$ \Delta f = \sum_{i=1}^n E_i(E_i(f)). $$
Let $$ \mathbb{S}^2(r) = \left\{ (x,y,z) \in \mathbb{R}^3 : \left\{ \begin{array}{l} x = r\sin \phi \cos \theta \\ y = r\sin \phi \sin \theta \\ z = r\cos\phi \end{array} \right. \;\;,0\leq \theta \leq 2\pi, 0 \leq \phi \leq \pi \right\} $$
So there's single chart for the sphere, name this $\varphi$ . If I did the calculation right I have
$$ \varphi_{*,(\theta,\phi)} = \begin{pmatrix} -r\sin\phi \sin\theta & r\cos\phi \cos\theta \\ r\sin\phi \cos\theta & r\cos\phi \sin\theta \\ 0 & -r\sin\phi \end{pmatrix} $$
To define an o.n. reference frame I did the following calculations
$$ \begin{array}{l} \left\langle \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi} \right\rangle_{\mathbb{S}^2(r),(\theta,\phi)} = \left\langle \varphi_{*,(\theta,\phi)}\frac{\partial}{\partial \theta}, \varphi_{*,(\theta,\phi)} \frac{\partial}{\partial \phi} \right\rangle_{\mathbb{R}^3,\varphi(\theta,\phi)} = 0\\ \left\langle \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta} \right\rangle_{\mathbb{S}^2(r),(\theta,\phi)} = \left\langle \varphi_{*,(\theta,\phi)} \frac{\partial}{\partial \theta},\varphi_{*,(\theta,\phi)} \frac{\partial}{\partial \theta} \right\rangle_{\mathbb{R}^3,\varphi(\theta,\phi)} = r^2 \sin \phi \\ \left\langle \frac{\partial}{\partial \phi}, \frac{\partial}{\partial \phi} \right\rangle_{\mathbb{S}^2(r),(\theta,\phi)} = \left\langle \varphi_{*,(\theta,\phi)} \frac{\partial}{\partial \phi}, \varphi_{*,(\theta,\phi)} \frac{\partial}{\partial \phi} \right\rangle_{\mathbb{R}^3,\varphi(\theta,\phi)} = r^2 \end{array} $$
We have then
$$ T_{(\theta,\phi)}\mathbb{S}^2(r) = \text{span} \left\{ \frac{1}{r\sin\phi} \frac{\partial}{\partial \theta}, \frac{1}{r} \frac{\partial}{\partial \phi} \right\} $$ Which is an orthonormal frame for every $(\theta,\phi)$. This gives me the following expression of the laplacian $$ \Delta_{\mathbb{S}^2(r)}f = \left( \frac{1}{r^2 \sin^2\phi} \frac{\partial^2}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} \right)f $$
According to few references I've seen around the expression is wrong. I did the calculation few times but I cannot spot the error.
Can you maybe tell me what I am doing wrong? I am assuming the metric on $\mathbb{S}^2(r)$ is the one induced by $\mathbb{R}^3$.