$$ \begin{align*} &\text { Let } \mathrm{x}=2 \mathrm{y} \quad \because x \rightarrow 0 \quad \therefore \mathrm{y} \rightarrow 0\\ &\therefore \lim _{x \rightarrow 0} \frac{12-6 x^{2}-12 \cos x}{x^{4}}\\ &=\lim _{y \rightarrow 0} \frac{12-6(2 y)^{2}-12 \cos 2 y}{(2 y)^{4}}\\ &=\lim _{y \rightarrow 0} \frac{12-24 y^{3}-12 \cos 2 y}{16 y^{4}}\\ &=\lim _{y \rightarrow 0} \frac{3(1-\cos 2 y)-6 y^{2}}{4 y^{4}}\\ &=\lim _{y \rightarrow 0} \frac{3.2 \sin ^{2} y-6 y^{2}}{4 y^{4}}\\ &=\lim _{y \rightarrow 0} \frac{ 3\left\{y-\frac{y^{3}}{3 !}+\frac{y^{5}}{5 !}-\cdots \infty\right\}^{2}-3 y^{2}}{2 y^{4}}\\ &=\lim _{y \rightarrow 0} \frac{3\left[y^{2}-\frac{2 y^{4}}{3 !}+\left(\frac{1}{(3 !)^{2}}+\frac{2}{3 !}\right) y^{4}+\cdots \infty\right)^{2}-3 y^{2}}{2 y^{4}}\\ &=\lim _{y \rightarrow 0} \frac{3\left\{y^{2}-\frac{2 y^{4}}{3 !}+\left\{\frac{1}{(3 !)^{2}}+\frac{2}{5 !}+y^{4}+\cdots \infty\right)-3 y^{2}\right.}{2 y^{4}}\\ &=\lim _{y \rightarrow 0}\left[\frac{-\frac{6}{3 !}+3\left\{\frac{1}{(3 !)^{2}}+\frac{2}{5 !}\right\} y^{2}+\cdots \infty}{2}\right]\\ &=\lim _{y \rightarrow 0}\left[\frac{-1+3\left\{\frac{1}{(3 !)^{2}}+\frac{2}{5 !}\right\} y^{2}+\cdots \infty}{2}\right]\\ &=-\frac{1}{2} \text { (Ans.) } \end{align*} $$
Doubt
Can anyone please explain the 5,6,7 equation line? Thank you