Let $K$ be a number field, $\mathcal O_K$ the ring of integers of $K$ and let $\left \{ \varepsilon _1, \cdots, \varepsilon _{r_1+r_2-1} \right \}$ generator of $\mathcal O_K^\times$ mod $\mu(K)$ (here $\mu(K)$ denotes the roots of unity of $K$). Define the following mapping:
$\lambda : \mathcal O_K^\times \to \mathbb R^{r_1+r_2}$
$ \lambda(\varepsilon):=(\log |\sigma_1(\varepsilon )|, \cdots , \log |\sigma_{r_1}(\varepsilon )|, 2\log |\sigma_{r_1+1}(\varepsilon )|, \cdots , 2\log |\sigma_{r_1+r_2}(\varepsilon )| )$
where $\sigma_1, ..., \sigma_{r_1}$ are the real embeddings and $\sigma_{r_1+1}, ..., \sigma_{r_1+r_2}$ are the complex embeddings.
My question: Why is $\left \{ \lambda(\varepsilon_1) , \cdots \lambda(\varepsilon_{r_1+r_2-1}) \right \}$ a $\mathbb Z$-basis of $\lambda(\mathcal O_K^\times)$?
Thanks in advance.
Bye,
David