Suppose that $Y,X,X_{1},X_{2},X_{3},\ldots$ are random variables such that $X_{n}\xrightarrow{\mathcal{P}}X$ and $X_{n}\xrightarrow{\mathcal{P}}Y$. Does $X = Y$ almost surely?
Here is my attempt.
Due to the definitions involved, the following limits hold for every $\varepsilon > 0$: \begin{align*} \lim_{n\to\infty}\mathbb{P}(\{\omega\in\Omega : |X_{n}(\omega) - X(\omega)| \geq \varepsilon\}) = \lim_{n\to\infty}\mathbb{P}(\{\omega\in\Omega : |X_{n}(\omega) - Y(\omega)| \geq \varepsilon\}) = 0 \end{align*}
We want to prove that: \begin{align*} \mathbb{P}(\{\omega\in\Omega : X(\omega) = Y(\omega)\}) = 1 & \Longleftrightarrow \mathbb{P}(\{\omega\in\Omega : |X(\omega) - Y(\omega)| = 0\}) = 1 \end{align*}
But then I get stuck. The hint says to apply the triangle inequality.
Can someone help me with this?