First of all, i want to build it in hardware so i need this in "digital operations" like "and" or "xor".
So I tried myself in a $GF(2^4)$. With the minimal polynom $z^4+z+1$:
$$a(z) = a_0 + a_1 \cdot z + a_2 \cdot z^2 + a_3 \cdot z^3$$
$$[a(z)]^3 = a_0 + a_1 \cdot z^3 + a_2 \cdot z^6 + a_3\cdot z^9 $$
$$= a_0 + a_1 \cdot z^3 + a_2 \cdot (z^3 + z^2) + a_3 c\dot (z^3+z)$$
$$= a_0 + a_1 \cdot z + a_2 \cdot z^2 + (a_1+a_2+a_3) \cdot z^3$$
Now i have to replace $(a_0, a_1, a_2, a_3)$ by $(a_0, a_3, a_2, a_1 + a_2 + a_3)$ The + operator is just a xor. This is functional.
If i do it on $GF(2^6)$ with minimal polynom $z^6+z+1$:
$$a(z) = a_0 + a_1 \cdot z + a_2 \cdot z^2 + a_3 \cdot z^3 + a_4 \cdot z^4 + a_5 c\dot z^5$$
$$[a(z)]^3 = a_0 + a_1 \cdot z^3 + a_2 \cdot z^6 + a_3 \cdot z^9 + a_4 \cdot z^12 + a_5 \cdot z^15$$
$$[a(z)]^3 = a_0 + a_1 \cdot z^3 + a_2 \cdot (z+1) + a_3 \cdot (z^4+z^3) + a_4 \cdot (z^2+1) + a_5 \cdot (z^5+z^3)$$
$$[a(z)]^3 = (a_0 + a_2 + a_4) + a_2 \cdot z + a_4 \cdot z^2 + (a_1 + a_3 + a_5) \cdot z^3 + a_3 \cdot z^4 + a_5 \cdot z^5$$
Now i should replace $(a_0, a_1, a_2, a_3, a_4, a_5)$ with $(a_0+a_2+a_4, a_2, a_4, a_1 + a_3 + a_5, a_3 ,a_5)$ For example if i want to take the power of 3 from $a^11= 100011$, it should give $a^33 = 010010$.
For new $a_5: a_5 = 1$
For new $a_4: a_3 = 0$
For new $a_3: a_1 + a_3 + a_5 = 1 + 0 + 0 = 1$
For new $a_2: a_4 = 0$
For new $a_1: a_2 = 0$
For new $a_0: a_0+a_2+a_4 = 1 + 0 + 0 = 1$
makes = 101001 which is $a^23$
Why it works on $GF(2^4)$ and not on $GF(2^6)$? What is my mistake?