Yesterday I had to deal for the first time with the concept of oscillation: I found this wide general definition:
Let $X$ a topological space, $(Y,d)$ a metric space and $f:X\to Y$ a map. The value $$\omega_f(x_0):=\inf\Big\{\sup_{x,y\in U}d(f(x),f(y))\,|\,U\subseteq X\,\mathrm{neighbourhood\,of}\,x_0\Big\}\in[0,+\infty]$$ is called oscillation of $f$ in $x_0\in X$.
In particular, if we assume $f:(X,d)\to\mathbb R$ with its natural metric, its pretty obvious that $$\omega_f(x_0)=\inf_{\varepsilon>0}\,\sup_{x,y\in B_\varepsilon(x_0)} |f(x)-f(y)|=\inf_{\varepsilon>0}\left[\sup_{x\in B_\varepsilon(x_0)} f(x)-\inf_{x\in B_\varepsilon(x_0)} f(x)\right]\qquad(\ast)$$ where $B_\varepsilon(x_0)\subseteq X$ is the open ball centered $x_0$ with radius $\varepsilon>0$ in the metric space $(X,d)$. Now I ask if there's a relationship between oscillation, limsup and liminf of $f$ in $x_0$: I imagine that the following holds $$\omega_f(x_0)=\limsup_{x\to x_0} f(x)-\liminf_{x\to x_0} f(x).$$ On this way, I think to have proved one inequality: if we say $B_\varepsilon:=B_\varepsilon(x_0)$ and $B^*_\varepsilon:=B_\varepsilon\setminus\{x_0\}$, then we have $$\limsup_{x\to x_0} f(x)-\liminf_{x\to x_0} f(x)=\inf_{\varepsilon>0}\sup_{x\in B^*_\varepsilon} f(x)-\sup_{\varepsilon>0}\inf_{x\in B^*_\varepsilon} f(x)\leq\inf_{\varepsilon>0}\sup_{x\in B_\varepsilon} f(x)-\sup_{\varepsilon>0}\inf_{x\in B_\varepsilon} f(x)=\\=\inf_{\varepsilon>0}\sup_{x\in B_\varepsilon} f(x)+\inf_{\varepsilon>0}\sup_{x\in B_\varepsilon} (-f(x))\leq\inf_{\varepsilon>0}\left[\sup_{x\in B_\varepsilon} f(x)+\sup_{x\in B_\varepsilon} (-f(x))\right]=\omega_f(x_0)$$ where the last equality holds for $(\ast)$. Suppose these lines up here are correct, I can't help myself proving the opposite inequality and so I ask for your ideas -- any hint is appreciated :-)