Let $A\subset [0, 1]$ be any set.
$\mathbf{1}_A:[0,1]\to\Bbb{R}$ defined by
$\mathbf{1}_A(x)=\begin{cases}1&x\in A\\ 0& x\notin A\end{cases}$
$\mathbf{1}_A$ is called indicator function of $A$
Set of discontinuity of $\mathbf{1}_A=\partial(A)$
where $\partial(A)$ denote the set of all boundary points of $A$
Particular example: (Using my favorite Cantor set $\mathcal{C}$)
$\mathbf{1}_{\mathcal{C}}(x)=\begin{cases}1&x\in \mathcal{C}\\ 0& x\notin \mathcal{C}\end{cases}$
Then set of discontinuity $:=D_{{\mathbf{1}}_{\mathcal{C}}}= \partial(A)=\mathcal{C}$
The Cantor set is an uncountable set and it's complement $[0, 1]\setminus \mathcal{C}$
has positive measure $ ( m([0, 1]\setminus \mathcal{C})=1) $, is also uncountable.
Now you can produce more examples using indicator functions $ :) $
Probably helpful post.