I am having trouble on understanding a proof from this website https://math.libretexts.org/Bookshelves/Analysis/Introduction_to_Mathematical_Analysis_I_(Lafferriere_Lafferriere_and_Nguyen)/02%3A_Sequences/2.05%3A_Limit_Superior_and_Limit_Inferior.
Suppose $\limsup a_n = L$. $(\forall \epsilon \in \mathbb{R}^+) (\exists N \in \mathbb{N}) (\forall n \in \mathbb{N}) (n \geq N \implies | \limsup a_n - L| < \epsilon$. Let $ \epsilon = 1 $, there exists an $N_1 \in \mathbb{N}$ s.t. $1 - \epsilon < \limsup a_{N_1} < 1 + \epsilon$. I am confused on why we can say there exists $n_1 \in \mathbb{N}$ s.t. $1 - \epsilon < a_{n_1}< 1 + \epsilon$. I know that the set $\{a_k : k \geq N_1 \}$ has to be bounded above since $\sup a_{N_1}$ is an upper bound $\forall k \geq N_1$ and $\sup a_{N_1} < L + 1$. Hence, $\sup a_{N_1}$ exists, but what confuses me is that how do we know that $\sup a_{N_1} \in \{a_k : k \geq N_1 \}$.
After that I think I understand the rest of the proof by using the archmidean's property $(\forall \epsilon > 0) (\exists N \in \mathbb{N}) (1/\epsilon < N)$ with $1 - 1/k < a_{n_k} < 1 + 1/k$ and setting k>N.