Is the following proof correct for showing that $\sqrt{3}\notin \mathbb{Q}(\sqrt[12]{2})$?
If $\xi$ is a primitive twelveth root of $1$, there are 12 morphisms $\mathbb{Q}(\sqrt[12]{2})\to {\mathbb{\bar Q}}$, given by $\sqrt[12]{2} \mapsto \xi^j\sqrt[12]{2}$ for $j=0,...,11$. If $\sqrt3 \in \mathbb Q (\sqrt[12]2)$, then we could write $$\sqrt{3} = \sum_{k=0}^{11}a_k\sqrt[12]{2^k}.$$ for some rational $a_k$. Now, applying each of the morphisms, we obtain $$\delta_j\sqrt{3} = \sum_{k=0}^{11}a_k\xi^{jk}\sqrt[12]{2^k}, \ j=0,...,11,$$ where each of the deltas is $\pm 1$. Adding for all $j,$ we get $$\sum_{j=0}^{11}\delta_j\sqrt{3} = 12a_0,$$ and since $\sqrt 3$ is irrational, $LHS = a_0 = 0$. If instead we add only for even $j,$ then we obtain $$\sum_{\text{even }j}\delta_j\sqrt{3} = 6a_6\sqrt{2};$$ but $\sqrt 3 \notin \mathbb Q (\sqrt 2)$, so again $LHS = a_6 = 0$. Finally, adding for $j$ a multiple of 4, $$\sum_{j=0,4,8}\delta_j\sqrt{3} = 3a_3\sqrt[4]{2} + 3a_9\sqrt[4]8.$$ Squaring both sides, $$3\bigg(\sum_{j=0,4,8}\delta_j\bigg)^2 = 9a_3^2 \sqrt 2 + 18a_9^2 \sqrt 2 + 36a_3a_9.$$ Irrationality of $\sqrt 2$ implies $a_3 = a_9 = 0$, but then $$\sum_{j=0,4,8}\delta_j = \pm 1 \pm 1 \pm 1 = 0,$$ which is impossible. Thus $\sqrt3 \notin \mathbb Q(\sqrt[12]2)$.
I'm a bit suspicious because the only values of $a_k$ used are those with $k$ a multiple of $3$.