The final sum looks like a Kapteyn Series. Maybe it can be simplified or is the solution to a transcendental equation. From @metamorphy’s answer with Bessel J:
$$-\frac I\pi=\sum_{n=1}^\infty\frac{\text J_n(n)}n= \sum_{n=1}^\infty\frac{\text J_n(n)}n \cos\left(2\pi n\right)$$
Inverse Beta Regularized $\text I^{-1}_s(a,b)$ we have a partial closed form and a Kepler equation series solution:
$$x-\sin(x)=y\implies x=\boxed{\text{hav}^{-1}\left(\text I^{-1}_\frac y\pi\left(\frac32,\frac12\right)\right)=y+2\sum_{n=1}^\infty \frac{\text J_n(n)}n\sin(y n)}\tag{1}$$
which is shown here with the inverse haversine.
$$\sum_{n=1}^\infty\frac{\text J_n(n)}n \sin\left(\frac\pi2n\right)= \sum_{n=1}^\infty\frac{\text J_{4n-3}(4n-3)}{4n-3}-\sum_{n=1}^\infty\frac{\text J_{4n-1}(4n-1)}{4n-1} $$
$$\frac 2{\sqrt3}\sum_{n=1}^\infty \frac{\text J_n(n)}n \sin\left(\frac\pi3n\right)= \sum_{n=1}^\infty\frac{\text J_{6n-5}(6n-5)}{6n-5}+ \sum_{n=1}^\infty\frac{\text J_{6n-4}(6n-4)}{6n-4}-\sum_{n=1}^\infty\frac{\text J_{6n-2}(6n-2)}{6n-2}-\sum_{n=1}^\infty\frac{\text J_{6n-1}(6n-1)}{6n-1}$$
$$\vdots$$
All we need to do now is find something like $\sin(yn)=1,n\in\Bbb N$, but no value of $y$ satisfies this condition, so we must add multiple sines together or manipulate the sum. Then we remember the Fourier series:
$$\sum_{n=1}^\infty\frac{\text J_n(n)}n \cos\left(2\pi n\right)=\sum_{n=1}^\infty \sum_{m=1}^\infty a_m \frac{\text J_n(n)}n\sin\left(\frac{\pi m n }L\right)\mathop=^? \sum_{m=1}^\infty a_m \sum_{n=1}^\infty \frac{\text J_n(n)}n\sin\left(\frac{\pi m n }L\right),a_m= \frac 2L \int _0^L \cos(2\pi x)\sin\left(\frac{\pi m x}L\right)dx=\frac{2m((-1)^m\cos(2\pi L)-1)}{\pi(4L^2-m^2)}$$
where $a_m$ are series coefficients. If the series converges on $[-L,L]$, then we get a sum made of $\text{hav}^{-1}\left(\text I^{-1}_\frac mL\left(\frac32,\frac12\right)\right)$ terms using $(1)$
$$\text{hav}^{-1}\left(\text I^{-1}_\frac mL\left(\frac32,\frac12\right)\right),0\le \frac mL\le \pi$$
$$\text{hav}^{-1}\left(\text I^{-1}_{\frac m L-1}\left(\frac12,\frac32\right)\right)+\pi,\pi\le \frac mL\le 2\pi$$
$$\text{hav}^{-1}\left(\text I^{-1}_{\frac m L-2}\left(\frac32,\frac12\right)\right)+2\pi,2\pi\le \frac mL\le 3\pi$$
$$\text{hav}^{-1}\left(\text I^{-1}_{\frac m L-3}\left(\frac12,\frac32\right)\right)+3\pi,3\pi\le \frac mL\le 4\pi$$
$$\text{hav}^{-1}\left(\text I^{-1}_{\frac mL-4}\left(\frac32,\frac12\right)\right)+4\pi,4\pi\le \frac mL\le 5\pi$$
$$\vdots$$
Does this method work?