$a_1$, $a_2$, and $a_3$ are three given real numbers, $b_1$, $b_2$, and $b_3$ are three given complex numbers. Solve this problem
$\underset{x} {\bf max} ~~|b_1e^{ja_1 x} + b_2e^{ja_2 x} + b_3e^{ja_3 x}|^2$
It can be further written as
\begin{align} &\underset{x}{\bf max} ~~|b_1e^{ja_1 x} + b_2e^{ja_2 x} + b_3e^{ja_3 x}|^2 \\ =&\underset{x}{\bf max} ~~|b_1|^2 + |b_2|^2 + |b_3|^2 + 2\textrm{Re}(b_1b_2^*e^{ja_1x}e^{-ja_2x}) + 2\textrm{Re}(b_2b_3^*e^{ja_2x}e^{-ja_3x}) \\ &~~~~~~~~~+ 2\textrm{Re}(b_1b_3^*e^{ja_1x}e^{-ja_3x}) \\ =&\underset{x}{\bf max} ~~|b_1||b_2|\cos((a_1-a_2)x+\angle{b_1}-\angle{b_2}) +|b_2||b_3|\cos((a_2-a_3)x+\angle{b_2}-\angle{b_3})+\\ &~~~~~~~~~~|b_1||b_3|\cos((a_1-a_3)x+\angle{b_1}-\angle{b_3}) \end{align}
If \begin{equation} \left\{ \begin{aligned} (a_1-a_2)x+\angle{b_1}-\angle{b_2} & = 2k_1\pi, k_1\in\mathbb{Z} \\ (a_1-a_3)x+\angle{b_1}-\angle{b_3} & = 2k_2\pi, k_2\in\mathbb{Z} \end{aligned} \right. \end{equation} all three $\cos()$ terms can achieve maximum value. But there are not always $k_1, k_2\in\mathbb{Z}$ that satisfy the above formula. Therefore there are some tradeoffs between three $\cos()$ terms.
Its derivative of $x$ is the addition of three $\sin()$ functions, and it is difficult to find the zero point of the derivative. I wonder if there is some way to solve this problem, even suboptimal solution. Thanks much!